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Abstract. Using both powder and single crystal samples, neutron and x-ray diffraction data
were obtained with quasicrystals of the AILiCu system. Esotopic substitution on the Li and
Cu atomic sites allowed amplitudes and phase shift of the partial structure factors to be
determined. Using a high-dimensional crystallography approach results in the phasesto be
reconstructed and atomic densities were calculated, The six-dimensional periodic structure
appeared as a primitive hypercubic lattice with mid-edge and vertex Al/Cu atomic surfaces
plus a Li bodycentre site. The major drawbacks of the experimental approach are then
bypassed by modelling details of the six-dimensional structure, still in agreement with
diffraction data. The related three-dimensional quasiperiodic structure can be described in
terms of connected clusters or, alternatively, families of atomic planes, Comparison with the
structure of the crystalline R-phase is of interest.

1. Introduction

In periodic crystals the structure is completely specified when both the unit cell (or the
Bravais lattice) and the positions of atoms in this unit cell are determined. The so-called
direct methods of crystallography are the usual way to extract this structural information
from diffraction data. Basically the structure is at first modelled rather crudely and then
progressively refined by adjusting atomic coordinates to fit the diffraction data.

Quasiperiodic crystals actually have hidden translational invariances which can be
recovered if the structure is properly specified in a higher dimensional space. For
instance, icosahedral quasicrystals cannot have three-dimensional (3D) periodicity but
there are 6D cubic Bravais lattices accepting these symmetries. Recovering periodic
schemes at the expense of higher dimensionality allows the tools of crystallography to
be used, although necessarily within a very careful approach, as made previously [1-4]
with quasicrystals of the AlMn system [5]. This is, however, intrinsically more difficult
for a quasicrystal than for a erystal. A perfect quasiperiodic structure, without any
disorder, still has aninfinite number of sites in 30 which are not exactly equivalent. There
are also practical difficulties to be overcome, related to the fairly low level of information
that can be extracted from diffraction patterns of quasicrystals.

One way to overcome these experimental difficulties partly, is to collect the largest
possible number of independent sets of diffraction data with the aim of separating
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chemical from topological parameters. Such a procedure has been achieved to some
extent with the AlMn quasicrystals [1, 2] thanks to contrast variation effects in neutron
diffraction.

Quasicrystals of the AILiCu system are certainly an exciting subject within this
scheme since contrast variations can be easily and rigorously produced by isotopic
substitutions on Li(®Li, "Li) and Cu(®*Cu, %°Cu) atoms [6]. Moreover, single grains of
more than a millimetre across [7-10] can be grown and then single crystal x-ray and
neutron diffraction studies are feasible [11-14]. The purpose of this paper is to derive
the best possible structure of AILiCu quasicrystals, directly from neutron and x-ray
diffraction data.

2. Basic principles for quasicrystallography

The relations between 3p quasiperiodic and higher dimensional periodic structures are
well understood [15-17]. Icosahedral quasicrystals have periodic structures in 6D space
which contains our 3D physical space, also called parallel space R3,,, and a comp-
lernentary, or perpendicular, space R3,.. In the cut method [18], an icosahedral
quasiperiodic arrangement of atoms in 3D physical space R3,; corresponds to a periodic
arrangement of 30 hypersurfaces, or atomic shells A3, in 6D space R6. These atomic
shells intersect the 3D real world hyperplane at the atom positions. For each type (or
family) of atomic sitesin three dimensions there is one A3, shell whose relative volume
is directly related to the corresponding relative atomic 3D density. In an idealistic
monoatomic icosahedral quasicrystal, with a single site at the origin of the 6D structure,
and triacontahedral A3, entirely contained in the R3,.., space, the 3D atomic density
is a distribution of Dirac functions at the vertex positions of a 3D Penrose tiling (3DPT).
The volume of A3, is equal to n;a® in which a is the 6D lattice parameter and n; the 3D
atomic density. _
" Correspondence rules also exist between the reciprocal spaces R6*,
R3%,, and R3;.,. These reciprocal spaces contain the Fourier transforms (FT) of the
densities, It is easy to demonstrate that the FT of the 3D density, i.e. F(Q,,), is the
projection onto R3%, of the FT of the 6D density, i.e. F(Q), in R§; F(Q) in turn is a
distribution of d-functions modulated by G(Q.r), the FT of A3, (@, and @, are
the projections of @¢ onto R35,, and R3..,, respectively).

The points of interest for an experimental approach to the quasicrystal structures
may then be summarized as follows.

(i) There is a one-to-one correspondence between Qg and @, which generates a six
integer indexing of the diffraction peaks measured at @, in R37,, and allows us to derive
from diffraction data the sp Bravais lattice and possibly the space group in the case of
favourable extinction rules [19, 20].

(ii) Intensities |F(Q@,,)|* measured at Q,,, in diffraction data are also the intensities
| F(@¢){? that would correspond to a ‘6> diffraction experiment’.

(iif) The diffraction pattern in R3},, is a very dense set of peaks whose intensity is a
decreasing function of Qpepp.

(iv) The direct FT of these measured F(Q), or, at least of |F(@,)|*, gives the 6D
structure (site positions and A3, function), or at least the corresponding 6D Patterson
functions [3, 4].

(v) The 3D cut of this 6D structure by R3,,, results in physical atom positions.
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With ternary compounds such as AILiCu quasicrystals, the F(Q,.,.) and F(Q,) struc-
ture factors contain several contributions such as

F(Q4) = 8(Q — Q) 2 5,6 o(Qerp) eXp(i21Q; * 1)

@ being indicative of the atomic sites at position r, in 6D space; b, are the scattering
lengths of atoms sited at r, and G, the FT of the pertinent volume A3, (a) attached to
each site. The FT of these F(Q,) gives the lattice points in 6D correctly but it is generally
difficult to extract A3, () atomic shells, Isotopic substitutions, when feasible, allow
variation of the weight of one, or several, atomic species into the neutron diffracted
intensities. By measuring several diffraction patterns weighted differently, it is then
possible to calculate what would be the diffraction pattern if each atomic species was
alone, i.e. the so-called partiaf structure factor. The problem can then be treated as
the superposition of several monoatomic structures. This method is going to be used
hereafter.

3. Sample preparation, alloy properties and experiments

Within the field of research for light AlLi-base alloys to be used for aerospace purposes,
the AILiCu phase diagram has been reconsidered carefully along with the thermo-
dynamical properties of the phases of interest [21]. The identified phases were the
tetragonal §-Al,Cu, Fcc §-AlLi, Fee TB-Al; sCu,Li, Bec R-AlsCulis, HEX TI-AlL,CuLi
and icosahedral T2-Al,CuLi,. In particular, it has been shown that only slow cooling
rates are required to form the icosahedral T2-phase which behaves like an equilibrium
phase going, apparently, directly to the liquid state upon heating. The T2-phase can be
obtained asthe grain boundary precipitates upon annealing in an aluminium-rich AlCuLi
alloy, or by direct solidification of large dendrites embedded into an Al-rich matrix, or
else, by free solidification into the single grain quasicrystal [8]. The phase diagram as
reported in [21] shows that the BCC R-phase and the icosahedral T2-phase have very
similar features. Their densities are almost the same (2.46 and 2.47 g cm ™%, respectively)
and they form within a very narrow composition range: Als ¢,Cu 115 59 for the R-phase
and Al ,Cuy gLis 5, for the T2-phase (within 3% error bars). The R-phase is likely to
melt congruently at 638 = 2 °C while the T2-phase undergoes a non-congruent melting
at 622 = 2°C. A very unfortunate consequence is that a completely pure T2-phase
cannot be obtained easily and one has to accept contamination by residual a-Al or (and)
Tl-phase except perhaps for the small triacontahedral single grains which result from
free solidification with separation of the dendrites from the residual liquid in internal
shrinkage cavities. This has to be kept in mind of course when analysing diffraction data
from bulk samples, even if the point is somewhat dedramatized by the relatively small
distance in the phase diagram between the true liquid-solid transition and the virtual
congruent melting temperature of the T2 compound. Powder neutron diffraction pat-
terns of both the T1 and ico-phases are shown in figure 1: they are going to be considered
for a proper identification of the actual diffraction peaks of the icosahedral phase.

As already stated, neutron diffraction is particularly well suited when isotopic con-
trast variation can be achieved. Lithium has two stable isotopes, SLi and "Li, whose
respective scattering lengths are +0.20 X 107" and —0.222 X 10~ cm. This allows
significant changes into the contrast on the Li sites of the structure when alloys are
prepared with different 5Li/"Li mixtures. A ‘zero-scatterer’ element Li® is even easily
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Figure 1. Neutron powder diffraction patterns as measured with the ico-phase (top) and the
parasitic crystalline T,-phase (bottom). The strongest peaksof T, (022), is visible in the ico-
phase pattern and allows an estimate of the contamination. The jco-phase peaks are indexed
with (N, M) according to [19].

obtained by mixing the two isotopes in a ratio of about 1: 1. Copper also has two stable
isotopes: ®*Cu with a scattermg length of +0.672 x 107" cm and %*Cu with a scattering
length of +1.102 x 10~ cm.

The Li/"Limixtures, at different composition were chill cast from 250 °Cinto boron-
nitride coated steel crucibles underan argon controlled atmosphere. The lithium mixture
was then added to proper Al-Cu liquid alloys at 730 °C. The resulting AICuLi liquid was
finally chill cast within five minutes into preheated graphite-coated steel moulds and
maintained at 500 °C for about 80 h in dry air. The solidified ingots of T2-phase (®=
18 X 60 mm} were ground into a fine powder and put into thin-walled vanadium con-
tainers for the purpose of powder neutron diffraction measurements. Five samples of
the icosahedral phase were produced with natural copper and different Li/"Li isotopic
compositions corresponding to (Li) scattering length & (Li) = —0.190 (natural Li),
-0.110, 0, +0.102, +0.20 (pure °Li isotope) (in 10”2 ¢cm), and two more samples with
Li-zero scatterer (b(Li) = 0) and either ®*Cu or %*Cu isotope.

Parts of the sample were characterized by powder x-ray diffraction and electron
diffraction. The shrinkage cavity method already mentioned in this paper and described
in detail elsewhere [8] was used to produce single (quasi)crystal grains and large pieces
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of oriented dendrite of the icosahedral phase, for the purpose of four-citcle x-rays and
neutron diffraction scans.

The powder neutron diffraction data were collected at the high flux reactor facilities
of the Institut Lave-Langevin (ILL, Grenoble), using the D2B two-axis diffractomer.
We used it with a wavelength of the monochromatized neutron beam of A = 1.5947 A
and in a high flux configuration that corresponds to a resolution AQ/Q =5 x 1073,
Diffraction patterns were accumulated over periods of 12h. Data were treated as
explained in detail elsewhere [1]. Diffraction patterns are shown in figure 2.

The single crystal x-ray diffracted intensities were collected on an AED2 Siemens
four-circle diffractometer with a MoK, (4 = 0.7107 A) anode. The icosahedral single
grain was a small triacontahedron of about 200 um diameter. About 1000 diffracted
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Figure 2. Neutron powder diffraction patterns as measured with samples of the ico-phase
containing different °Li/”Li isotopic mixtures; (L1} is the corresponding scattering length.
Contrast effects are clearly visible.
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infensities were measured, corresponding to 56 independent reflections with intensities
larger than three times their standard deviations. The typical w-scan width of these
reflections was found to be about three times as large as that of ordinary crystals of
comparable size on the same apparatus. The singie crystal neutron diffracted intensities
were collected on the four-circle diffractometer D10 at the ILL, with a monochromatized
neutron beam wavelength of A = 1.26 A, The icosahedral sample was a 5 mm size
oriented dentrite, with typical w-scan width of the reflections equal to 3°. In both x-ray
and neutron single crystal data, absorption effects were neglected.

Using the indexing with six Miller pseudo-cubic indices (2/h', k/k', 1/1') [19] and
the &b hypercubic lattice constant a = 7.15 A, both powder diffraction (with different
contrast parameters) and four-circle diffraction peaks (x-rays and neutrons) were
indexed by

2‘7; r r r
chp"Qpar—m(h‘FTh,k+1’k,f+1,'f) (1)

with an error of less than 1073 A~!. The recorded refections correspond to (N,
M) = (228, 368). They all belong to a primitive icosahedral Bravais lattice [19]. Inci-
dentally, we have checked that the powder neutron diffraction pattern measured with
the crystalline T1 phase (figure 2) was well interpreted with the structure proposed
recently by Van Smaalen et @/ [22]. In a previously reported experiment [6], the partial
pair distribution function has been measured, using the so-called direct space method
[23). The resulting information is going to be used hereafter.

4. Data analysis

As in classical crystallography, intensities of the powder diffraction peaks have to be
corrected for Lorentz factor and absorption effects. The former is straightforward.
The latter was carried out using the classical Paalman and Pings procedure. Neutron
absorption is indeed tremendous with Li containing alloys, due to the very large absorp-
tion of the ®Liisotope. Despite using special containers (cylinders with external diameter
10 mm and an empty core of diameter 8 mm) the transmission of the powder samples is
typically only 25%, 18% and 10% for alloys containing ®Li/"Li mixtures with 50%, 75%
and 100% of the absorbing ®Li isotope, respectively.

The actual °Li/"Li compositions have to be known for the accurate calculation of the
partial structure factors. The nominal composition has to be checked carefully. This has
been achieved by measuring the powder neutron diffraction patterns of LiF samples,
whose structure is well specified, and then using the SLi/"Li composition as an adjustable
parameter to fit the data to the structure.

4.1. Aluminium/fcopper order

The AILiCu quasicrystal is a ternary alloy. Three partial structure factors, with their
amplitudes and phases, have to be determined if the structure is to be treated as a
superimposed monoatomic system. Fortunately, the possibility of preparing samples
with a ‘zero scatterer” lithium (Li™) yields some simplifications in as much as any ico-
AlCuLi® sample actually behaves like a binary compound from the point of view of
neutron diffraction. Thus, three such Li” bearing samples prepared with natural copper,
$Cu and ©Cu should lead to the determinations of Al/Cu atomic correlations. Actually
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the powder neutron diffraction patterns corresponding to the extreme contrast obtained
with ®Cu and ®Cu look very much the same for both alloys which means that Al/Cu
order is very weak [6]. Thus, the (Al, Cu) atoms can now be treated as a single average
species, say atom A, and the ico-phase as a pseudo-binary AgLis; alloy whose partial
structure factors may be obtained from Li isotopic substitution. Such a conclusion had
been already reached in the pair distribution study [6].

4.2. Partial structure factors for A and Li atoms

The diffracted intensity at a given scattering vector Qe,, = @ can be written
I(Qpar) = |F(Qpar)|2
= |bAF A(Qpar) + l-'?LiF L:’(Qpar)l2 (2)

where b,(constant) and b ;(variable) stand for the neutron scattering length of the
average A and Liatom, respectively. The Fvalues are the corresponding partial structure
factors. I{Q,,,) are integrated intensities of the measured reflections. They are deter-
mined by a Guassian fit procedure as explained elsewhere in detail [1].

In the powder diffraction mode, the amplitudes |@,, | of 3, are the only accessible
scattering parameters. The measured intensities are then:

KQper) = 2 | F{Qper)|* (3)

in which subscript i represents scanning of the different non-equivalent families of
reflections showing up at the same { and g; is the multiplicity of equivalent refiections
ina given family i. Hereafter, peaks belonging to a single family of equivalent reflections
will be referred to as ‘simple reflections’. Their powder diffracted intensities are related
to their single crystal diffracted intensity through their single multiplicity ¢, The other
reflections will be referred to as ‘multiple reflections’.

As in regular crystallography, considering integrated intensities of the diffraction
peaks somewhat disregards disorder. With the possible exception of the AlFeCu-like
systems, almost all quasicrystals show some degree of phason disorder, manifested as
broadening of the diffraction peaks, This is true for AILiCu quasicrystals (figure 2) [23].
The approach taken in the present work forgets this aspect and relates to an ideal,
unstrained AILiCu quasicrystal.

Accordingly, and as already explained elsewhere [1, 24], equation (2} when applied
to contrast variation data allows determination of amplitudes and phase differences of
the partial structure factors (Fy;, F|}). In the present case this has been carried out first
with the simple reflections (25 of the measured ones) for both powder and single crystal
data altogether. Then, x-ray and neutron four-circle data being renormalized with
respect to each other, multiple reflections were treated the same way. Centro-symmetry
of the structure (phase differences equal to 0 or s} was observed for the 66 measured
independent reflections.

Degeneracy problems have been ruled out thanks to the single crystal data. This is
a crucial point which certainly makes the structure specification more accurate in
comparison with the case of AlMn quasicrystals [1, 2]. Reflections of the (N, M) =
(72, 116) families are illustrative of the point with almost zero intensity for one family
and very strong intensity for the other.
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5. Phase reconstruction and sp periodic structure

Favourable circumstances have made phase reconstruction relatively easy for the AlMn
quasicrystal [1, 2]. In the present case, the ., dependences of the [F,} and |Fy;| values
(figure 3) are just clouds of points which do not suggest a clue to the (F,, F;) signs.
Consequently we had to work somewhat iteratively through successive steps of approxi-
mations.
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Figure 3. (., dependences of the measured amplitudes of the partial structure factars,
There is no evidence for simple behaviour, beyond 2 rough general decay at ‘large’ Qpr,
values,

The starting point is of course the 66 independent reflections whose partial structure
factors |F,| and | F |, with their relative signs, have been obtained in section 4 of this
paper.

A first easy step is to use the six-integer indexing of these reflections to Fourier
transform |F,|%, [Fy[? and [F4 + Fi;|? in a 6D direct space. The result is partial and total
unweighted Patterson functions, repeating here a procedure first proposed by Gratias
{3] and Cahn and co-workers [4]. Rational cross sections of these Patterson functions
are shown in figure 5. From the density features visible in the figure and remembering
that Patterson functions illustrate self-overlapping of the structure upon translation, it
is easy to conclude that the A3, volumes in the 6D cube are sited at vertex (OR) and
mid-edge (ME) positions for A atoms and at body-centre (BC) positions for Li atoms.
The partial structure factors should be written:

6
FA(Q&) = Viﬁ [GOR(Qpcrp) + z GQE COS(Q& ' ri)] (4)
FLi(Qb) = Vlf, GBC(Qperp) COS(QG * 8) . (5)

G functions are the Fourier transforms of the A3, volumes, Vg is the volume of the 6D
cube, i = 1-6 corresponds to the six different mid-edge positions and & is the half-
diagonal vector of the D cube.

As afirst approximation, Fy (@) can be calculated using equation (5) and a spherical
A3y, (BC) whose volume is deduced from the Patterson functions (figure 5) along with
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(a) 8B
Figure 4, Patterson functions of the ¢D periodic structure for (a} A, (b) Liand {¢) A + Li

atomic sites. The figures show a slice of the D space containing one perpendicular and one
paralle] fivefold axes.

2

comp{gsition and density data [21]. This ‘equivalent’ A3,.;(BC) sphere has a radius of
8.54 A.

The strongest experimental reflections are mainly influenced by size rather than
shape details of A3,... Thus, itis reasonable to attribute signs to the strong experimental
Fy; (typically for Qp,.,, < 0.5 in units of 27/a) identical to those of the spherical approxi-
mation. Now, signs of the corresponding F, can also be derived since the Fy/Fy;
relative signs have been experimentally determined. This gives about thirty independent
reflections with the phases properly reconstructed for both F, and F; experimental
partial structure factors.

Inthe last step, the above thirty strongest pairs of partial structure factors are Fourier
transformed in the 6D space. From the deduced partial density distribution, radii equal
t06.5and 5.6 A are obtained for the spherical equivalent A2, volumes of the A atoms
(vertex and mid-edge respectively). Again using equation (5), calenlated values of £,
are used to attribute signs to the remaining experimental £ and then F;; F, and F},
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of the complementary space. (b} Same as in {a) but for the Li(BC) volume, {¢, 4) Same as in
(a) but for two different cross sections of the A(ME) volume.

having their phases (0 or 7) reconstructed unambiguously are given in table 1. The final
6D densities are illustrated in figure 5. The body-centre lithium volume is basically an
8 A sphere with twenty added ‘bubbles’ along the threefold axes and twelve holes dug
along the fivefold axes. The vertex A volume is 2lso basically a 6.8 A deformed sphere
with added small volumes along the fivefold directions. Finally. the mid-edge A volume
is more complicated, with fivefold axial symmetry and cross sections roughly circular in
a plane perpendicular to its fivefold axis, roughly elliptical in a plane containing the
fivefold axis and (1, T, 0)perp direction. The mid-edge volume has only a 3m symmetry,
the fullicosahedral symmetsy beingrecovered when the six mid-edge sites are considered
altogether.

A 3D structure in our physical space can then be easily obtained by selecting the
density part which has perpendicular coordinates equal to zero. Before doing that, the
6D structure is going to be improved by modelling.
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Table 1. Experimental values of the partial structure factors F,, Fy; with their phases
reconstructed; (., and Q.. are also given, along with multiplicity g, indexing ngp and (N,

M) [19].
Coar Qe

N M (i") (2x/a)  np Fy £

4 4 30 1057 0743 1 0 1 0 0 0 031 -025
6 9 20 148 0398 o011 0 0 1 112 -0.88
8 8§ 60 1495 1051 11 1 O 0 ~1 -027 0.3
8§ 12 3 1711 0460 I 0 1 1 0 -1 -0.40 048
10 13 60 1.80 0843 1 1 1 0 1 -1 -034 043
12 12 60 1831 1288 2 1 0 1 0 ¢ =020 -0.02
12 16 12 20611 0874 1 1 1 1 1 -1 -038 036
14 21 60 2263 0608 2 0 1 1 0 ~1 025 —040
18 25 60 2498 0960 1 2 2 0 0 0 -B18 -0.39
18 20 12 2632 0167 21 1 1 1 -1 =136 -153
20 28 120 2640 0987 1 2 2 0 1 0 =02 001
20 32 30 2768 028 12 0 -1 2 0 18 113
22 33 120 2837 0762 2 1 1 2 0 -1 =029 000
24 3 60 293 079 2 1 1 2 1 -1 021 -0.47
24 3 20 293 079% 2 2 0 0 2 0 031 -0.24
26 41 60 3139 048 2 2 0 -1 2 D 191 -0.52
28 40 120 3146 1089 2 2 2 1 0 -1 -03 005
28 44 12 325 0340 3 11 1 1 -1 -1.26 055
28 44 60 3254 0340 2 2 1 0 2 -1 077 -009
30 45 20 3312 08¢ 2 2 1 -1 2 -1 -0.49 045
30 45 60 3312 0890 3 0 1 2 0 -1 -031 018
30 45 60 3312 080 221 1 2 -1 -010 -021
32 4% 120 3421 0818 3 11 2 0 -1 -028 008
32 48 30 3421 0919 2 2 0 -2 2 0 000 9.00
34 33 60 3575 0671 3 1 1 2 1 -1 -019 029
36 56 120 3.67 0709 2 2 3 0 0 1 025 -0.14
33 61 60 380 0329 3 21 0 2 -1 106 -1.28
40 64 60 3914 0402 2 3 1 -1 2 1 -032 067
42 65 60 3963 0813 2 3 ¢ -2 2 0 043 021
46 73 60 4185 0565 3 01 2 2 1 -1 052 —-0.13
46 73 60 4185 0565 2 3 0 -1 3 © 009 020
52 84 30 4472 0176 2 3 0 -2 3 0 22 116
56 88 60 4601 0764 3 3 0 -1 3 0 -012 -027
56 88 60 4.601 0.764 3 1 2 3 1 -2 -043 016
58 93 60 4717 0435 3 3 1 0 3 -1 -085 -039
60 9 20 4794 0492 3 3t -1 3 -1 -127 045
60 96 60 4794 Q0492 4 1 2 2 1 -2 112 033
62 97 60 483 081 3 3 0 -2 3 0 -049 0.14
62 97 120 4.834 081 3 4 1 -1 2 0 000 000
64 100 120 4909 081 4 1 3 2 1 -1 —-040 0.33
64 100 120 4909 0891 3 3 2 -1 3 0 000 0.0
66 105 60 5017 0633 4 2 2 1 2 -2 057 02
66 105 60 5017 0633 4 0 2 3 0 -2 087 001
68 108 120 5090 0673 4 2 3 2 0 -1 048 000
70 113 50 5194 0242 4 1 2 3 1 -2 094 -lsl
72 116 12 5264 033¢ 4 2 2 2 2 -2 315 012
72 116 60 5264 033 4 3 1 0 3 -1 000 000
74 117 60 5301 0782 4 3 1 -1 3 -1 —-029 -0.9
74 117 60 5301 0782 4 3 1 1 3 =1 —026 (.14
78 125 120 5469 0519 4 3 2 0 3 -1 033 -032

continued overleaf



12 M de Boissieu et al

Table 1. (continued)

Qe Qperp
N M p (K'l) (2m/a) g Fa Fu
80 128 30 5535 0.568 2 4 0 =2 4 0 15 -022
80 128 120 5535 0.568 4 1 3 3 i -2 -033% 014
90 145 60 5.886 0.373 34 0 -2 4 0 218 ~1.08
92 148 120 5.948 0.438 41 3 4 0 -2 106 000
98 157 120 6.129 0.592 351 -2 '3 I =057 =027
100 160 60 6.189 0.635 4 4 1 0 4 -1 043 0.42
100 160 60 6.189 0.635 52 2 3 2 -2 032 016
100 160 30 6.189 0.635 4 0 3 4 0 =3 030 -0.00
102 165 20 6.275 0.09 4 4 4 1 1 i 0674 -2.19
104 168 60 6,333 0.248 53 2 i 3 -2 -026 0.18
106 169 120 6.364 0.749 4 4 4 2 0 1 .33 0.71
108 172 60 6.421 0.784 51 3 3 01 =3 ~047 -0.09
108 172 60 6.421 0.784 4 4 1 -2 4 -1 000 0.00
108 172 120 6.421 0.784 0 3 35 0 =2 4 0.00 0,00
124 200 120 6.911 0377 4 5 1 =2 4 0 1.26 0.30
130 209 60 7.068 0.548 4 5 2 -2 4 0 100 030

6. Modelling further. How and why

The partial structure factors being measured and their phases reconstructed, one may
wonder why we are trying to model a structure when the density distributions, either in
the 6D periodic lattice or in the 3D physical space, can be obtained by direct Fourier
transforms of these partial structure factors. Itis a reasonable approach which, however,
may suffer some drawbacks. Most of these drawbacks have equivalents in classical
crystallography where they have been overcome through model fitting procedures. A
typical example is the so-called termination or truncation effect {25] which is even more
dramaticin quasicrystallography because of the relatively restricted range of investigated
Operp values. Some other difficulties, for instance parallel components of (or not flat)
A3y, volumes [2], induce additional parameters which must be adjusted.

On the other hand, the experimental A3, volumes may have features which are
undesirable as they generate unphysically short atomic distances into the 3D structure.
Thus, the A3,.,, have to be empirically ‘retailored” for these too short distances to be
removed. The principle of such a tailoring is illustrated in figure 6 which shows a rational
cross section of a 6D hypercubic structure, with A3, volumes on body-centre and mid-
edge sites. Considering two of these volumes, labelled A(1} and A(2) in the figure, and
the distance R, between these volumes as measured along the physical axis of the cross
section, the distance R, is an actual atomic distance of the 3D structure if, and only if,
a non-empty set of points is generated when A(2) is intersected by the R, translated
A(1). This is equivalent to considering the intersection of the projection of A(1) and
A(2)into the R3,, space in which their centres are R, distant from each other. Thus,
if the atomic distance R, is to be avoided, holes of proper sizes and locations have to
be dug out of A(1) or/and A(2) as exemplified in figure 6. A detailed report on such
tailoring procedures has been published by Duneau and Oguey [26].

Scanning the distances between sites systematically results in a list of what has to be
avoided for physical reasons. The strongest constraint corresponds to the distance
between the A3, volumes related to the body-centre Li sites and the mid-edge A
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Figure 6, Fivefold axis slice (a) of the ¢D space (schematic) showing ‘overlapping’ between
BC and ME volumes A(1) and A(2). The short distance R, will show up along a physical
(par) fivefold axis because A(1) and A(2) have overlapping parts (in the broken loop) when
projected onto the perp- fivefold axis (b). When looked at in a twofold axis plane of the perp-
space (¢) the A(1) volume is the white ‘sphere’ and the A(2) volumes are the grey ellipses.
Clearly, parts of the white ‘sphere’ have to be dug out if overlapping has to be avoided.

sites, which is equa! to 0.597 A along a physical (par) fivefold axis (figure 6). This is
unacceptably short and is removed by digging holes of the proper volume along the
twelve fivefold axes of the BC volume. To restore the lost density, additional small
volumes must be added where room is available. Figure 6 and the experimental results
illustrated in figure 5 show that a clear possibility is around the twenty threefold axes.

The same analysis can be done for non-physical distances between ME-ME, OR-ME
and ME-ME pairs of A3, volumes. The whole procedure resultsin aset of A3, models.
The vertex Agg volume is a sphere of 6.8 A radius with an empty central hole of
2.3 A radius; the mid-edge Ay volume is an axial ellipse sited on a fivefold axis with
geometrical size given by a = 4.15 A and b = ¢ = 6.34 A; the body-centre Ligc volume
is a sphere of 8.5 A radius with elliptical holes on fivefold axes (same 4, b and c, as the
ME site) and additional pieces of small spheres (radius 3.5 A) on the threefold axes
(figure 7).

Yi

A

Figure 7. Cross section in the perpendicular space
of the body centre volume as proposed in the
model derived from diffraction data (full line).
Compare with figure 5(b). Hatched areas within
the broken lines show the stellation that generates
asystematic decoration of the 30pT threefold axes.
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The direct cut of the above ¢D structure by our physical 3D space generates atom
positions into a cluster whose size is only limited by computer time, This is of course a
somewhat brute force procedure but quite useful anyhow. We used it to build a spherical
cluster and calculate pair distribution functions. These pair distribution functions are
shown in figure 8 where they are compared with the one directly measured and reported
in [6]. The result is quite satisfactory: all atomic disrances and weight of the pairs are
reasonably reproduced, without spurious unphysical short distances. In particular, the
model fits positions and widths of the first distance peaks, which means that, contrary
to the ico-AlMn structure [2], there are no parallel components in the A3, volumes of
the ico-ACuli system, at least down to a limit of about 0.05 A.

Further validation of the model requires calculation of its Fourier components and
comparing them to the diffraction data (single crystals and powders).

The adjustment of the model to data was attempted in a way reminiscent of classical
crystallography with a scaling factor, plus a Debye-Waller factor (DW) for each of the
three different A3, volumes as free parameters. The relative Al/Cu compositions
were also let free on the two A gg and A g volumes in order to save a possible unobserved
weak order to be compared with that existing in the crystalline R phase [27].

Residual factors (R, WR), x> and Dw are gathered in table 2. The DW factors are about
twice those previously measured in the R phase {27] but still are reasonable values. The
Al/Cu relative concentrations also have little influence on the fit qualities. The retained
values obtained from x-ray data are c(Al) = 0.879 for the mid-edge sites and 0,716 for
the vertex sites, instead of the 0.84 value that would correspond to total randomnness.
Perpendicular Debye—Waller factors have no influence on the fit quality, suggesting that
isotropic phason disorder is not a relevant property of the system.

The somewhat large value of the residual factors wr might be related to the weak
peaks not being fitted correctly, because of misdefined details in the A3, volumes. An

Fui
£
15F &
,
+
10 %
*
*-0-
05 "
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0
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25 75 125 055 05 10
R{A) Qy (27/a unit)
Figure 8. Partial pair distribution functions. Figure 9. Fy; caleulated with the present medel.
Model {. ..) of the present work compared with Differences with a spherical approximation show

experimental results from [6] (—). up mainly at relatively large Q.. values.
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Table 2. Residual factors, ¥* and Debye-Waller factors as obtained from fitting the model

to the single crystal data.

Ry RE WR ¥ Bowm Blve)  Bug
Xraps 008 008 017 24 222(6) 2254 26
Neutron 0.08 0©¢11 014 4 2.05(9)  141(6) 2.6

Table 3. Total structure factors as calculated, Foq., and measured F,,, for the neutron
single crystal data.

Q ar Qperp
N oM op A Cra) e Fror Flow Fip ol
4 4 30 1.06 0.74 1 01 00 0 1.26 1.6 2.1 0.6
6 9 20 148 0.40 n 11 00 1 532 283 241 4.1
8§ 12 30 1.71 046 1 01 1 0 -1 =241 5.8 6.0 1.3
10 13 60 1.82 084 1 11 0 1 -1 -1.84 3.4 1.6 0.5
12 16 12 201 0.87 111 1 1 -1 -1.38 1.9 32 03
20 32 30 277 028 120 -1 2 [} 5.05 25.5 22,7 2.8
26 4 60 314 049 220 -1 2 0 7.66 58.6 61.9 1.7
28 44 12 325 0.54 311 ] 1 -1 -534 285 240 1.2
28 44 60 325 054 2 21 0 2 -1 2.49 6.2 68 1.0
30 45 20 331 0.89 221 =1 2 -1 =197 3.9 5.1 0.7
24 53 60 357 067 3211 2 1 -1 =208 4.2 3.5 03
38 61 60 3.82 033 321 02 -1 5,12  26.2 271 1.5
40 64 60 3.91 0.40 3 21 I 2 -1 =194 3.8 4.7 0.6
45 73 60 419 0.57 31 2 21 -2 1.69 29 33 0.8
46 73 60 4.19 0.57 2 30 -1 3 0 .77 0.6 32 0.8
52 84 30 448 0.17 2 30 =2 3 8] 536 287 306 5.0
58 93 60 4.72 043 3 31 0 3 -1 =195 3.8 52 1.0
60 9% 20 479 049 331 -1 3 -1 =522 273 235 27
60 96 60 479 0.49 4 1 2 21 -2 325  10.5 89 0.9
62 97 60 483 0.8 330 -2 3 g -095 0.9 3.0 0.5
6 105 60 502 063 4 0 2 3 0 -2 2.77 1.7 7.1 2.2
70 113 &80 5,19 024 4 1 2 31 -2 519 269 233 1.3
72 116 12 526 0.33 4 2 2 2 2 =2 9.80 96.1 101.6 3.0
72 116 60 526 033 4 3 1 0 3 -1 -1.46 2.1 32 0.8
T8 125 120 5.47 (.52 4 3 2 0 3 -1 1.62 2.6 3.8 06
80 128 30 554 057 2 40 -2 4 1] 5.01 251 264 2.}
90 145 6} 589 037 340 -2 4 1) 7.89 62.2 61.6 2.1
90 145 12 5.89 037 5 2 2 2 2 =2 7.44 554 62.5 3.0
92 148 120 595 0.44 4 1 3 4 0 -2 293 8.6 84 2.1
102 165 20 &.28 0.09 4 4 4 11 1 550 303 28.6 2.6
110 177 60 6.50 0,47 5 3 2 2 3 -2 1.97 3.9 5.7 2.1
122 197 60 6.86 0.30 5 4 3 1 3 -1 -1.56 2.4 3.9 1.1
124 200 120 6.91 (.38 5 4 4 z 1 1] 3.19 10.2 8.8 1.1
130 209 60 7.07 0.55 3 4 4 2 2 0 3.44 11.9 15,5 1.0
154 249 80 7.71 0.20 6 4 4 2 2 -1 8.32 692 73.1 2.5
156 252 60 7.76 0.30 6 4 3 2 3 =2 3.17 10.1 8.4 1.0
156 252 20 776 0.0 551 -1 5 -1 -508 258 210 20
188 304 60 852 020 6 55 22 0 3.01 9.1 8.7 1.9
194 313 60 8.65 045 6 6 4 g 3 0 3.45 11.9 103 1.0
208 336 30 896 (.35 6 0 4 6 0 —4 513 26.3 235 3.0
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illustration of the above statement is shown in figure 9 where the Fourier transform of
the non-spherical Bc(Li) volume appears as sensitive to shape details at large Qperp

reflection only.

For the powder diffraction data the R factors are of the order of 0.15 and x? is about
equal to 1-5 for the five contrasts. A quantitative comparison between model] and data
is presented in tables 3 and 4.

Table 4. Same as table 3 but for x-ray data.

O 0
& Qe e

N M H F madel Falodel F 3xp U%xp
4 4 30 106 074 101 00 0 131 1.7 1.9 0.1
6 9 20 1.48 (.40 011 00 1 510 260 26.1 0.5
8 8§ 60 150 1.05 111 00 =1 -069 0.5 2.0 02
8 12 30 171 046 1 01 1 0 -1 -1.61 2.6 27 01

10 13 60 1.82 084 111 01 -1 -188 35 22 02
12 12 60 183 129 210 1 0 0 -0.55 0.3 1.2 0.1
12 16 12 201 0.87 1 11 1 1 -1 =149 2.2 28 01
14 21 60 226 061 201 1 0 -1 1.07 1.1 09 02
18 25 60 2.50 0.96 122 00 0 -097 0.9 1.3 0.1
18 20 12 263 0.17 211 11 -1 -610 372 397 .7
20 28 120 2.64 099 1 22 01 0 -143 2.0 1.5 0.2
20 32 30 277 028 120 -1 2 0 685 932 95.6 1.6
22 33 120 284 076 211 2 0 -1 -1.08 1.2 i.1 0.1
24 36 60 296 0.80 211 21 -1 0.32 0.1 04 0.1
24 36 20 296 080 220 02 0 1.13 1.3 15 01
26 41 60 3.14 049 220 -12 0 7.84 615 60.9 1.1
28 40 120 315 1.09 2 212 10 -1 -124 15 23 0.2
28 44 12 325 054 311 11 -1 =528 279 25.1 0.5
28 44 60 325 054 02 21 0 2°-1 333 111 103 0.3
30 45 20 331 Q.89 221 -1 12 -1 —-l62 26 31 0.1
30 45 60 331 0.89 301 2 0 -1 —1.66 28 1.4 0.1
30 45 60 331 0.8 221 1 2 -1 -016 00 03 01
32 48 120 342 092 311 2 0 -1 -099 1.0 1.2 041
34 353 60 3.57 067 311 21 -1 —-194 3.8 33 04
36 56 120 3.68 071 223 00 1 0.88 0.8 0.8 0.1
3 61 60 3.8 033 3 21 0z -1 3.1 9.7 9.6 03
46 73 60 4.19 0.57 312 21 -2 1.50 2.3 3.2 01
4% 73 60 4.19 057 230 -1 3 0 045 0.2 0.2 01
52 84 30 448 0.17 230 -23 0 850 723 788 1.3
56 8 o0 4.60 0.76 330 -1 3 0 005 0.0 03 0.1
56 88 60 460 076 312 311 -2 147 2.2 1.8 01
58 93 60 472 043 331 0 3 -1 =267 7.1 7.9 0.3
60 96 20 479 040 331 -1 3 -1 —-407 1635 142 04
66 9% 60 479 0.49 4 12 21 -2 361 130 142 0.4
62 97 60 4.83 0.86 330 -2 3 0 -102 1.0 2.2 0.1
64 100 120 491 0.89 4 13 21 -1 =081 0.7 1.2 0.1
66 105 60 502_.063 0 4 22 1 2 =2 193 ki 15 02
66 105 60 502 0.63 4 0 2 3 0 -2 2,36 5.6 7.2 03
68 108 120 509 Q.67 4 23 2 0-1 1,35 1.8 21 0.1
70 113 60 519 024 4 12 31 -2 2.35 5.5 5.1 0.2
T2 116 12 526 0.33 4 22 22 -2 981 9.3 100.0 1.6
74 117 60 530 0.78 4 31 -1 3 -1 -0.65 0.4 08 0.1
74 117 60 3530 078 4 31 1 3 -1 ~1.22 1.5 0.5 0.1
78 125 120 547 052 4 32 03 -1 104 11 1.6 0.1
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Table 4. (continued)

Q ar Q 33
N M u (Ii'j) (ZPJ:'/G) Tign Fraodet Flodel -szp o%xp
80 128 30 5.54 0.57 240 -2 4 0 419 176 185 0.5
80 128 120 554 0.57 4 13 31 -2 -072 0.5 1.0 0.1
o0 145 &0 5.89 0.37 340 -2 4 0 507 258 274 0.6
92 148 120 5.95 .44 4 1 3 4 0 =2 2.88 8.3 7.7 03
98 157 120 6,13 0.59 351 -2 3 1 -1.56 2.4 22 0.2
100 160 60 6.19 0.63 4 4 1 0 4 -1 1.31 1.7 14 0.1
100 160 60 6.19 0.63 522 3 2 -2 0.89 0.8 0.7 01
100 160 30 6.19 0,63 4 0 3 4 0 -3 0.33 0.1 0.5 01
102 165 20 6.28 0.09 4 4 4 1 1 2.01 4.0 2.7 02
104 168 460 633 0.25 5 3 2 1 3 -2 0.48 0.2 03 0.1
106 169 120 6.36 0.75 4 4 4 20 1 0.87 0.8 1.0 0.1
108 172 &0 6.42 0.78 5113 31 -3 -097 0.9 1.2 0.2

7. Atomic structure of the AICuLi quasicrystal in 3p physical space

As already stated, the straightforward method to obtain atomic positions is to generate
their three codrdinates as intersections of the 6D periodicstructure by our physical space.
An alternative way of getting these coordinates is to Fouder transform the partiai
structure factors (with their phases) directly in the 3p space as explained in [28]. Both
methods give the same results as exemplified in figure 10. According to observations
made on pair distribution functions [6], a more physical description may be attempted
within a comparison of the ico-phase structure with that of the cubic R-phase [27]. The
structure of the R-phase as determined by Audier et al [27] belongs to the Im3 (BCC)
space group with a lattice parameter of 13.9056 A, The Al, Cu, Li atoms are distributed
over shells around the origin. The set of successive polyhedra from centre to surface
forms the so-called ‘Samson’s complex’ which contains 104 atoms. The structure of R-
AlCuLi; can then be described as a CsCl-type packing of distorted Samson polyhedra
linked in two ways.

(i) Along edges of the cubic cell by sharing two aluminiurm atoms (site 12¢).

(i) Alongthe eight body diagonals of the cube by sharing 2 common hexagonal face
of the polyhedra (site 48h). The remaining lithium atoms (site 12¢) are found in the
interstices formed within the Samson polyhedron packing. They cap the pentagonal
faces of a truncated icosahedron. The site 12¢ (Li atoms) are located at 24 of the 32
vertices of a ‘large’ rhombic triacontahedron of radius » = 8.18 A. The eight remaining
vertices coincide with the Li in 16f sites already considered in the formation of the
undetlying dodecahedral shell. The distorted truncated icosahedra have not a perfect
icosahedral symmetry which would have forced the atoms in 48h sites to emerge at the
surface of the outer triacontahedral atomic shell. There are :wo triacontahedral shells
(so-called ‘small’ and ‘large’ heretofore) with diameters in a ratio practically equal to
the golden mean 7. All the Al/Cu atoms are in the shells of a ‘soccer ball’ (small and
large icosahedron plus external shell of the truncated icosahedron) while Li atoms are
on the external shell of the large and small triacontahedra.

The conditions to be fulfilled by the A3, volumes for generating a given type of
atomic clusters in the cut procedure have been analysed by several authors [15, 26, 29].
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Figure 10. Part (a) of the figure shows a schematic of a fivefold axis slice of the 6o model
structure, with cross sections of the vertex, mid-edge and body-centre volumes. We have
highlighted an exampie of a distance which is too short in the loop, as detailed in figure 6.
The dashed rectangle shows the acceptance domain for ME-ME distances through the central
hole of the vertex volume. The physical fivefold axis [170]y,, crosses the A3y volumes at 3D
atomic positions as shown in figure 10{b) which presents a slice of the 30 atomic density ag
deduced from the model (large and small circles are A and Li atoms, respectively), Cross
sections of small (large) triacontahedra and rhombohedral tiles are also shown. The model
density (10(}) compares quite well with the corresponding density map as directly obtained
from £T of the experimental F, (10(c)) and F, (10(d)}.

The basic principles are very similar to those used in section 6 in the procedure of
identification and elimination of the too short atomic distances and can be worked out
in the complementary (perp) space. A cluster is completely defined when atomic bonds
between centre-to-shell atoms are identified. For instance, the presence of icosahedral
clusters in the 3D structure will correspond to the existence of families of twelve equal
atomic distances converging along fivefold axes. In the 6D structure, this is equivalent
to say that a given A3, volume has twelve neighbours distributed along pertinent
directions and in such a way that the cut procedure generates the proper atomic pairs.
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Figure 11. Schematic view of the definition of the
acceptance domain for small icosahedra as the
common region between a vertex and twelve

Figure 12. Representation of the acceptance
domains for small icosahedra (full line circles)
and for soccer-balls (broken line circles) when

projected on the mid-edge volume. {a) is & cross
section containing the fivefold axis of the ellipse;
(b) is a cross section perpendicular to the fivefold
axis with two pentagons (size 4.25 A) of accept-
ance domains at 0.27 A on each side of the ellipse
equatorial plane.

neighbour mid-edge A3,.., when projected into
the perpendicular space. This is a 2D cross section.

In the 6D structure model, one vertex Aog volume is surrounded by twelve mid-edge
Ay volumes. The cut procedure generates A-A distances equal to 2.528 A if the
projected of the Agg and Ay into the perpendicular space have parts of their volumes
in common. This is visible in figure 10(a). The twelve projected Az having a small
common volume (figure 11), roughly a sphere of 1.65 A radius, indicates that small
icosahedra of A atoms will be found in the 3D atomic structure. This common volume
is called the acceptance domain and gives, in particular, the occurrence rate of the
corresponding clusters into the structure. As shown in figures 10(a), 11 and 12 the
acceptance domains corresponding to the external shell of the ‘soccer balls’ are identical
to that of a smali icosahedra; both correspond to the common volume in perpendicular
space of the 12 A, adjacent to a given Agg. More generally it can be demonstrated that
ail the shells present in a soccer ball have the same acceptance domain though coming
from different association of A3, volumes.

Thus, as summarized in table 5, all the atomic shells typical of the R-phase structure
were also found in the ico-phase, up to the so-called large triacontahedron. The cross
sections at z = 0 of the 3D density distribution presented in figure 13 show also very
clearly the presence of the two (small and large) triacontahedra and the other icosahedral
clusters. The acceptance domains may be finely facetted but the spherical approximation
is sufficient to provide at least an estimate of the proportion of Al/Cu atoms within the
soccer ball clusters. This proportion is found equal to only 28%, while soccer balls
contain all the atoms of the R-phase structure. These soccer balls are weakly connected
only along threefold axes by having hexagonal faces in common,; this is at variance with
the (distorted) soccer balls of the R-phase which share additionally Al atoms along
twofold axes. The drawing shown in figure 12 illustrates that the acceptance domain of
the soccer balls cannot be enlarped significantly; the limitation comes from the size of
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the equatorial circle of the ellipsoidal A,z volume which, in turn, cannot be larger if too
short Ayg—Lipc distances have to be avoided (figure 6). On the contrary, the acceptance
domain for the small icosahedra and small triacontahedra couid be enlarged without too
much inconvenience by elongating the ellipsoidal Ayg volume (see again figures 6 and
12) in its fivefold directions.
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Figure 13, Cross sections of the 3D atomic density corresponding to twofold (g) and fivefold
(b) planes. Traces of the various icosahedral clusters are visible (A = large and medium
circles; Li = small circles) as three planes composite and soccer balls (farge decagons) in the
fivefold map and triacontahedra in the twofold map.
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From a model previously proposed by Audier and Guyot [30], it is known that an
acceptance domain defined by a T-deflated triacontahedron (edges equal to 5.05/1 A
and volume equivalent to a sphere of 1.7 A radius) corresponds to a T2 inflated three-
dimensional Penrose tiling of the space (edges of 5.505 x 1? A). This demonstrates that,
in the present determined structures of the AlCuLi quasicrystals, most of the large
triacontahedra containing the soccer balls are on the vertices of a t°-inflated 3DPT. As
already stated these clusters would contain about 28% of the Al/Cu atoms and 7% of
the Li atoms. As it is not possible to increase the acceptance volume for these large
triacontahedra, it is sensible to try to complete the structure with small triacontahedra.
Providing a proper acceptance domain. most of them would indeed be on the face
diagonals of the tiles of the 73-inflated 3DPT and also on the prolate triad axis. But
the decoration would not be identical from tile to tile. Thus, even in its T>inflated
modification, a 3DPT may not be a good approach to this quasicrystal structure. Looking
for icosahedral clusters of the sort existing in the R-phase is of course a littie restrictive.
The rather small fraction of atoms included in the soccer balls is a measure of the degree
of similarity between R- and ico-phases and suggests that other types of clusters must be
involved in the structure of the ico-phase.

Incidentally, it is also interesting to confront the structure proposed in the present
work with models in which the atomic decoration is made directly on the elementary
Penrose lattice (edges of 5.05 A), as proposed for instance by Van Smaalen and co-
workers [31, 32]. On the selected cross sections of the 3D density shown in figures 10 and
13, images of rhombohedral tiles are indeed visible. The Al atoms generated by the cut
of the 6D vertex volume are sited on 3D vertex of the 3DPT, but due to the central hole of
the Agp volume and its external size, some vertices are unoccupied. The Al atoms
generated by cut of the mid-edge volume are also in mid-edge positions in the 3DPT, but
again with partial occupancy only. The Li atoms are generated mostly on the triad axis
of the prolate rhombohedra, in a /1/7 partition, but also occasionally at edge positions
at 1.93 A of unoccupied vertices. Thus, when the structure is assumed to be 30PT-like,
the decoration of the tiles is not unique.

In their attempts to describe the structure in terms of a 3DPT with a single type of tile
decoration, Van Smaalen [31] and Elswijk et af {32] had to inject a nonphysical AlCu/
Li disorder into the structure; the difficulties that they encountered might be good
evidence of how much a 3DPT is non-physical and not suitable for specifying quasicrystal
structures. The 6D structure as proposed by Van Smaalen [33], based on x-ray single
crystal data and symmetry conditions for the possible A3, volumes, is also a primitive
hypercubic lattice with atomic volumes at vertex and mid-edge positions for AlCu atoms
but the body centre volume was not observed because x-rays are not sensitive to lithium
atoms.

Henley and Elser [34) had also previously proposed a tiling model with three different
tiles, namely the classical prolate and oblate rhombohedra plus a rhombic dodecahed-
ron. The proposed decoration had something of what we have observed: Al/Cu atoms
on vertex and mid-edge positions; Li atoms on edges of prolates inside the dodecahedron
at 1.93 A of their empty centre.

Qiu and Jaric [35] have recently reported on a new method to reconstruct the phases
of the measured structure factors. These phases were considered as parameters to be
determined by the best fit between a hypothetical rational approximate of the quasi-
crystal and real crystal x-ray data (present work and [27]). They have reached an
interesting specification of the Al/Cu 6D substructure (Li not visible with x-rays). Their
Adperp volumes are very similar, with differences in details, to those reported in the
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Figure 14. Structure of the 3D density as described by families of twolold atomic planes as
obtained from projections of atom positions contained into a 40 X 40 x 40 A cube. Agg,
Ape and Lipe atoms are shown as large, medium and small open circles, respectively. Solid
and dashed lines exemplify more and less dense planes in the twofold family, respectively.

present work. In particular, the more elongated shape of the mid-edge volume in the
direction of fivefold axes increases the acceptance domains for small triacontahedra
(=2.7 A radius instead of 1.8 A in term of spherical equivalence).

Finally, a last alternative way of visualizing the 3D structure may be a description in
terms of atomic planes. Such a description can be obtained rather easily from the
appropriate physical cut of the 6D periodic structure. The point is exemplified in figure
14 showing a family of atomic ‘planes’ perpendicular to a twofold direction. Two different
average repetition distances, namely 1.643 and 2.658 A in a ratio of 1/7, and arranged
into a Fibonnacci sequence, are observed. Their average d-spacing corresponds to one
of the strongest diffraction peak, i.e. (N, M) = (20, 32). The twofold planes are also the
most dense and more distant from each other (as compared with threefold or fivefold
plane families). They are formed by two different types of layers: (i) dense layers with
A atoms (originating from both vertex and mid-edge volumes) and Li atoms; (ii) less
occupied layers with either A or Li atoms alone. Threefold or fivefold planes never
contain the three types of atoms simultaneously, Such a description is reminiscent of a
property of the simple 3pPT in which planes of atoms and columnar structures have been
pointed out by Duneau and Katz [15]. Finally, the structure as described in terms of
atomic plane families allows us to understand the observed morphology of the single
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(quasi)crystal AICuLi, along rules analogous to those of classical crystal growth. Indeed,
the triacontahedral single grains which have been obtained, have facets perpendicular
to twofold axes and edges along fivefold axes, the most dense atomic planes and rows.
Accordingly it may be conjectured that Al1SiMn quasicrystals tend to grow into dode-
cahedralor/andicosidodecahedral grains because of adifferent atomic decoration which
produces highest density in fivefold or threefold atomic planes {1, 2].

8. Conclusions

A detailed neutron and x-ray diffraction study of the AICuLi quasicrystal has been
completed. The association of contrast variation effects, thanks to both Cu and Li
isotopic substitutions, and single crystal investigations allows the best experimental
determination of partial structure factors, with their amplitudes and phases. The pro-
cedure for data analysis, though being worked out in 6D space, is reminiscent of early
age classical crystallography: Patterson functions are used to suggest a density model
which is further refined up to convergency with diffraction data.

The physical 3D structure has then been generated by a proper cut of the high-
dimensional description. Atom positions can then be simply listed for further use assuch
or analysed in terms of atomic plane families, statistics of atomic identified clusters,
30pT (inflated or not). Forcing the structure into the 30T with 5.05 A edges results in
unphysical AlCu/Li disorder [31, 32], or non-unique decoration of the tiles. Even the
7-inflated 30PT suffer the same drawbacks though to a lesser extent. This may not be
very surprising and it has been known for several years [36] that there are structures
which are neither decorations of 3DPTs nor strict projection from six dimensions whtich
are nevertheless icosahedral quasicrystals (random tiling models).

However, when the latter applies properly, and assuming that the A3, volumes of
the 6D structure can be designed in detail, complete information about atomic positions
remains contained in this higher space periodic description, within the usual very con-
densed aspect of the decorated unit cell. Unfortunately, we are still ignoring how to
project this information (if possible!) into our physical space. In the cut procedure, part
of the structural information is unavoidably lost and hidden in six dimensions, resulting
in limitations of size and type of clusters or atomic planes, unsatisfactory 2pPT etc. As
such, the 3p structure may be very useful anyhow and it permits progress into the
understanding of quasicrystals.
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