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Abstract. Using both powder and single crystal samples, neutron and x-ray diffraction data 
were obtained with quasicrystals of the AlLiCu system. lsotopic substitution on the Li and 
Cu atomic sites allowed amplitudes and phase shift of the partial StNCtUle factors to be 
determined, Using a high-dimensional crystallography approach results in the phases to be 
reconstructed and atomic densities were calculated. The six-dimensional periodic structure 
appeared as a primitive hypercubic lattice with mid-edge and vertex AI/Cu atomic surfaces 
plus a Li bodycentre site. The major drawbacks of the experimental approach are then 
bypassed by modelling details of the sixdimensional $tmcture, still in agreement with 
diffraction data. The related three-dimensional quasiperiodic structure can be described in 
terms of connected clusten or, alternatively. families of atomic planes. Comparison with the 
structure of the crystalline R-phase is of interest. 

1. Introduction 

In periodic crystals the structure is completely specified when both the unit cell (or the 
Bravais lattice) and the positions of atoms in this unit cell are determined. The so-called 
direct methods of crystallography are the usual way to extract this structural information 
from diffraction data. Basically the structure is at first modelled rather crudely and then 
progressively refined by adjusting atomic coordinates to fit the diffraction data. 

Quasiperiodic crystals actually have hidden translational invariances which can be 
recovered if the structure is properly specified in a higher dimensional space. For 
instance, icosahedral quasicrystals cannot have three-dimensional (3D) periodicity but 
there are 6D cubic Bravais lattices accepting these symmetries. Recovering periodic 
schemes at the expense of higher dimensionality allows the tools of crystallography to 
be used, although necessarily within a very careful approach, as made previously [ 1 3 ]  
with quasicrystals of the AlMn system 151. This is, however, intriosically more difficult 
for a quasicrystal than for a crystal. A perfect quasiperiodic structure, without any 
disorder,stillhasaninfinitenumberofsitesin3Dwhicharenotexactlyequivalent. There 
are also practical difficulties to be overcome, related to the fairly low level of information 
that can be extracted from diffraction patterns of quasicrystals. 

One way to overcome these experimental difficulties partly, is to collect the largest 
possible number of independent sets of diffraction data with the aim of separating 
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chemical from topological parameters. Such a procedure has been achieved to some 
extent with the AIMn quasicrystals [l, 21 thanks to contrast variation effects in neutron 
diffraction. 

Quasicrystals of the AlLiCu system are certainly an exciting subject within this 
scheme since contrast variations can be easily and rigorously produced by isotopic 
substitutions on Li(6Li, ‘Li) and C U ( ~ C U ,  %U) atoms [6]. Moreover, single grains of 
more than a millimetre across [7-101 can be grown and then single crystal x-ray and 
neutron diffraction studies are feasible [Il-141. The purpose of this paper is to derive 
the best possible structure of AlLiCu quasicrystals, directly from neutron and x-ray 
diffraction data. 

M de Boissieu et a1 

2. Basic principles for quasicrystallography 

The relations between A D  quasiperiodic and higher dimensional periodic structures are 
well understood [15-17]. Icosahedral quasicrystals have periodic structures in 6~ space 
which contains our 3D physical space, also called parallel space R3par and a comp- 
lementary, or perpendicular, space R3,,,. In the cut method [18], an icosahedral 
quasiperiodic arrangement of atoms in 3D physical space R3,,, corresponds to a periodic 
arrangement of 3D hypersurfaces, or atomic shells A3,,, in 6 0  space R6. These atomic 
shells intersect the 3D real world hyperplane at the atom positions. For each type (or 
family) of atomic sites in three dimensions there is one A3,., shell whose relative volume 
is directly related to the corresponding relative atomic 3~ density. In an idealistic 
monoatomic icosahedral quasicrystal, with a single site at the origin of the 60 structure, 
and triacontahedral A3,,,, entirely contained in the R3,,,, space, the 3~ atomic density 
is a distribution of Dirac functions at the vertex positions of a 3D Penrose tiling ( 3 ~ m ) .  
The volume of A3pc.p is equal to n3a6 in which (I is th& 6D lattice parameter and n3 the 3~ 
atomic density. 
. Correspondence rules also exist between the reciprocal spaces R6*, 
R 3 g  and R3&,. These reciprocal spaces contain the Fourier transforms (FT) of the 
densities. It is easy to demonstrate that the FT of the 3~ density, i.e. F(Qp,,), is the 
projection onto R3& of the FT of the 6D density, i.e. F(Q6), in R,’ ; F(Q6) in turn is a 
distribution of &functions modulated by C(Qp.,), the m of A3,,, (epar and Q,, are 
the projections of Q60nto R3&, and R3&,, respectively). 

The points of interest for an experimental approach to the quasicrystal structures 
may then be summarized as follows. 

(i) There is a one-to-one correspondence between Q6 and Qpar which generates a six 
integer indexing of the diffraction peaks measured at Q,,, in R3&, and allows us to derive 
from diffraction data the 6D Bravais lattice and possibly the space group in the case of 
favourable extinction rules [19,20]. 

(ii) Intensities lF(Qpa,)l* measured at Qpa, in diffraction data are also the intensities 
IF(Q# that would correspond to a ‘6D diffraction experiment’. 

(i) The diffraction pattern in R3&, is a very dense set of peaks whose intensity is a 
decreasing function of Qperp. 

(iv) The direct m of these measured F(Q6), or, at least of IF(Q#, gives the 6D 
structure (site positions and A3,, function), or at least the corresponding 6~ Patterson 
functions [3,4]. 

(v) The 3~ cut of this 6~ structure by R3,, results in physical atom positions. 
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With ternary compounds such as AlLiCu quasicrystals, the F(Qpar) and F(Q6) struc- 
ture factors contain several contributions such as 

F(Qd = WQ - Qka') 2 bS,(Q,,) e x p W Q 6  er,) 
LI 

CY being indicative of the atomic sites at position r, in 6D space; b, are the scattering 
lengths of atoms sited at re and G, the FT of the pertinent volume A3,,,(a) attached to 
each site. The FI of these F(Q6) gives the lattice points in 6D correctly but it is generally 
difficult to extract A~,,(cY) atomic shells. Isotopic substitutions, when feasible, allow 
variation of the weight of one, or several, atomic species into the neutron diffracted 
intensities. By measuring several diffraction patterns weighted differently, it is then 
possible to calculate what would be the diffraction pattern if each atomic species was 
alone, i.e. the so-called purlin1 structure factor. The problem can then be treated as 
the superposition of several monoatomic structures. This method is going to be used 
hereafter. 

3. Sample preparation, alloy properties and experiments 

Within the field of research for light AlLi-base alloys to be used for aerospace purposes, 
the ALiCu phase diagram has been reconsidered carefully along with the thermo- 
dynamical properties of the phases of interest [21]. The identified phases were the 

and icosahedral T2-A16CuLi,. In particular, it has been shown that only slow cooling 
rates are required to form the icosahedral "2-phase which behaves like an equilibrium 
phase going, apparently, directly to the liquid state upon heating. The T2-phase can be 
obtained as the grain boundary precipitates upon annealingin an aluminium-rich AlCuLi 
alloy, or by direct solidification of large dendrites embedded into an Al-rich matrix, or 
else, by free solidification into the single grain quasicrystal [SI. The phase diagram as 
reported in [21] shows that the BCC R-phase and the icosahedral T7-phase have very 
similar features. Their densities are almost the same (2.46and 2.47 g cmM3, respectively) 
and they form within a very narrow composition range: A15.60Cu,.20Li3.20 for the R-phase 
and A15,70Cul,mLi3,22 for the T2-phase (within 3% error bars). The R-phase is likely to 
melt congruently at 638 t 2°C while theT2-phase undergoes a non-congruent melting 
at 622 t 2°C. A very unfortunate consequence is that a completely pure T2-phase 
cannot be obtained easily and one has to accept contamination by residual @-AI or (and) 
T1-phase except perhaps for the small triacontahedral single grab which result from 
free solidification with separation of the dendrites from the residual liquid in internal 
shrinkage cavities. This has to be kept in mind of course when analysing diffraction data 
from bulk samples, even if the point is somewhat dedramatized by the relatively small 
distance in the phase diagram between the true liquid-solid transition and the virtual 
congruent melting temperature of the "2 compound. Powder neutron diffraction pat- 
terns of both the T1 and ico-phases are shown in figure 1: they are going to be considered 
for a proper identification of the actual diffraction peaks of the icosahedral phase. 

As already stated, neutron diffraction is particularly well suited when isotopic con- 
trast variation can be achieved. Lithium has two stable isotopes, 6Li and ?Li, whose 
respective scattering lengths are +0.20 X lo-', and -0.222 x lo-', cm. This allows 
significant changes into the contrast on the Li sites of the structure when alloys are 
prepared with different 6Li/7Li mixtures. A 'zero-scatterer' element Lice) is even easily 

tetragonal O-AI,Cu, FCC &AlLi, FCCTB-A17,5Cu,Li, BCC R-AISCuLil,.HEx TI-AI,CuLi . .  
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Figure 1. Neulronpouocr diffraction partcrnrarmcarured wiihihe KO-phase (lop) indihc 
parariiiccr)srallineT,-phasr (boltom) Thrsirongesl peaksolT , ( 0 2 2 ) , k v 1 ~ ~ b I e  intheim- 
phase pdllcrn and allon 8 an esitrnate of the conlaminalion. T h e  ico-phsw peaks arc indexed 
u~iih(N,.M)iccordingio[19] 

obtained by mixing the two isotopes in a ratio of about 1 : 1. Copper also has two stable 
isotopes:63Cu with a scattering length of f0.672 X IO-'* cm and 65Cu with a scattering 
lengthof +1.102 x lO-'?cm. 

The 6Li/7Li mixtures, at different composition were chill cast from250 "Cinto boron- 
nitride coatedsteel cruciblesunderan argoncontrolledatmosphere. The lithium mixture 
was then added to proper AI-Cu liquid alloys at 730 "C. The resulting AlCuLi liquid was 
finally chill cast within five minutes into preheated graphite-coated steel moulds and 
maintained at 500 "C for about 80 h in dry air. The solidified ingots of T2-phase (e= 
18 X 60 mm) were ground into a fine powder and put into thin-walled vanadium con- 
tainers for the purpose of powder neutron diffraction measurements. Five samples of 
the icosahedral phase were produced with natural copper and different 6Li/'Li isotopic 
compositions corresponding to (Li) scattering length b (Li) = -0.190 (natural Li), 
-0.110,0, +0.102, +0.20 (pure "i isotope) (in lo-'* cm), and two more samples with 
Li-zero scatterer (b(Li) = 0) and either 63Cu or 65Cu isotope. 

Parts of the sample were characterized by powder x-ray diffraction and electron 
diffraction. The shrinkage cavity method already mentioned in.this paper and described 
in detail elsewhere [8] was used to produce single (quasi)crystal grains and large pieces 
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of oriented dendrite of the icosahedral phase, for the purpose of four-circle x-rays and 
neutron diffraction scans. 

The powder neutron diffraction data were collected at the high flux reactor facilities 
of the Institut Laue-Langevin (ILL, Grenoble), using the D2B two-axis diffractomer. 
We used it with a wavelength of the monochromatized neutron beam of A = 1.5947 8, 
and in a high flux configuration that corresponds to a resolution AQ/Q = 5 x 
Diffraction patterns were accumulated over periods of 12 h. Data were treated as 
explained in detail elsewhere [l]. Diffraction patterns are shown in figure 2. 

The single crystal x-ray diffracted intensities were collected on an AED2 Siemens 
four-circle diffractometer with a MoK, ( A  = 0.7107 8,) anode. The icosahedral single 
grain was a small triacontahedron of about 200pn diameter. About 1000 diffracted 

Figure 2. Neutron powder diffraction patterns as measured with samples of the ico-phase 
containingdifferent 'LirLi isotopic mixtures; b(Li) is the corresponding scattering length. 
Contrast effects are clearly visible. 
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intensities were measured, corresponding to 56 independent reflections with intensities 
larger than three times their standard deviations. The typical w-scan width of these 
reflections was found to be about three times as large as that of ordinary crystals of 
comparable size on the same apparatus. The single crystal neutron diffracted intensities 
werecollectedon the four-circle diffractometer D10 at the ILL, with amonochromatized 
neutron beam wavelength of A = 1.26 A. The icosahedral sample was a 5 mm size 
oriented dentrite, with typical w-scan width of the reflections equal to 3". I n  both x-ray 
and neutron single crystal data, absorption effects were neglected. 

Using the indexing with six Miller pseudo-cubic indices (hlh', k lk ' ,  !I!') I191 and 
the 6~ hypercubic lattice constant a = 7.1S.&, both powder diffraction (with different 
contrast parameters) and four-circle diffraction peaks (x-rays and neutrons) were 
indexed by 
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Z n  
a 2(2 + 5 )  

Qexp = Qpar = 7 (h + rh' ,  k + rk' ,  1 + si') 
with an error of less than 10-3A-1. The recorded reflections correspond to ( N ,  
M )  s (228, 368). They all belong to a primitive icosahedral Bravais lattice [19]. Inci- 
dentally, we have checked that the powder neutron diffraction pattern measured with 
the crystalline T1 phase (figure 2)  was well interpreted with the structure proposed 
recently by Van Smaalen eta1 [22]. In a previously reported experiment [6] ,  the partial 
pair distribution function has been measured, using the so-called direct space method 
[23]. The resulting information is going to be used hereafter. 

4. Data analysis 

As in classical crystallography, intensities of the powder diffraction peaks have to be 
corrected for Lorentz factor and absorption effects. The former is straighttoward. 
The latter was carried out using the classical Paalman and Pings procedure. Neutron 
absorption is indeed tremendous with Li containing alloys, due to the very large absorp- 
tion ofthe 6Li isotope. Despite usingspecial containers(cy1inderswith externaldiameter 
10 mm and an empty core of diameter 8 mm) the transmission of the powder samples is 
typicallyonly25%, 18% and10%foralloyscontaining6Li/'Li mixtureswithS0%,75% 
and 100% of the absorbing 6Li isotope, respectively. 

The actual 6Li/'Li compositions have to be known for the accurate calculation of the 
partial structure factors. The nominal composition has to be checked carefully. This has 
been achieved by measuring the powder neutron diffraction patterns of LiF samples, 
whosestructureiswellspecified, andthenusingthe 6Li/7Licomposition asan adjustable 
parameter to fit the data to the structure. 

4.1. Aluminiumlcopper order 

The AlLiCu quasicrystal is a ternary alloy. Three partial structure factors, with their 
amplitudes and phases, have to be determined if the structure is to be treated as a 
superimposed monoatomic system. Fortunately, the possibility of preparing samples 
with a 'zero scatterer' lithium (Li'O') yields some simplifications in as much as any ico- 
AICuLicO' sample actually behaves like a binary compound from the point of view of 
neutron diffraction. Thus, three such Li'O) bearing samplesprepared with natural copper, 
63Cu and 6sCu should lead to the determinations of A@ atomic correlations. Actually 
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the powder neutron diffraction patterns corresponding to the extreme contrast obtained 
with and 65Cu look very much the same for both alloys which means that AI/Cu 
order is very weak [a]. Thus, the (AI, Cu) atoms can now be treated as a single average 
species, say atom A, and the ico-phase as a pseudo-binary bSLi,, alloy whose partial 
structure factors may be obtained from Li isotopic substitution. Such a conclusion had 
been already reached in the pair distribution study [6]. 

4.2. Partialstructure factors forA and Li atoms 

The diffracted intensity at a given scattering vector QeV = Qpar can be written 

I(QpaJ = IF(Qp.r)12 

IbAFA(Qpar) + buFdQpa312 (2) 

where bA(constant) and bLi(variable) stand for the neutron scattering length of the 
average A and Li atom, respectively. The Fvalues are thecorresponding partialstructure 
factors. I(Qpar) are integrated intensities of the measured reflections. They are deter- 
mined by a Guassian fit procedure as explained elsewhere in detail [l]. 

In the powder diffraction mode, the amplitudes lQprl of QPsr are the only accessible 
scattering parameters. The measured intensities are then: 

in which subscript i represents scanning of the different non-equivalent families of 
reflections showing up at the same Q and p, is the multiplicity of equivalent reflections 
in a given family i. Hereafter, peaks belonging to a single family of equivalent reflections 
will be referred to as ‘simple reflections’. Their powder diffracted intensities are related 
to their single crystal diffracted intensity through their single multiplicity p ,  The other 
reflections will be referred to as ‘multiple reflections’. 

As in regular crystallography, considering integrated intensities of the diffraction 
peaks somewhat disregards disorder. With the possible exception of the AIFeCu-like 
systems, almost all quasicrystals show some degree of phason disorder, manifested as 
broadening of the diffraction peaks. This is true for AlLiCu quasicrystals (figure 2) [23]. 
The approach taken in the present work forgets this aspect and relates to an ideal, 
unstrained AlLiCu quasicrystal. 

Accordingly, and as already explained elsewhere [ l ,  241, equation (2) when applied 
to contrast variation data allows determination of amplitudes and phase differences of 
the partial structure factors (FAI, FLi). In  the present case this has been carried out first 
with the simple reflections (25 of the measured ones) for both powder and single crystal 
data altogether. Then, x-ray and neutron four-circle data being renormalied with 
respect to each other, multiple reflections were treated the same way. Centro-symmetry 
of the structure (phase differences equal to 0 or n) was observed for the 66 measured 
independent reflections. 

Degeneracy problems have been ruled out thanks to the single crystal data. This is 
a crucial point which certainly makes the structure specification more accurate in 
comparison with the case of AlMn quasicrystals [l, 21. Reflections of the (N, M) = 
(72,116) families are illustrative of the point with almost zero intensity for one family 
and very strong intensity for the other. 
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5. Phase reconstruction and 6~ periodic structure 

Favourable circumstances have made phase reconstruction relatively easy for the AlMn 
quasicrystal [l, 21. In the present case, the Q,,dependencesof the IFA\ and lFLil values 
(figure 3) are just clouds of points which do not suggest a clue to the (FA, FLi) signs. 
Consequently we had to work somewhat iteratively through successive steps of approxi- 
mations. 

M de Boissieu et a1 
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. .  
2- . . 
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Figure 3. Q, dependences of the measured amplitudes of the partial sfiuclure factors. 
There is no evidence lor simple behaviour. beyond a rough general decay 3t 'large' Qps 
values. 

'4 

The starting point is of course the 66 independent reflections whose partial structure 
factors \FA[ and \FLaI, with their relative signs, have been obtained in section 4 of this 
paper. 

A first easy step is to use the six-integer indexing of these reflections to Fourier 
transform IFA]', IFL,[' and IFA + in a 6D direct space. The result is partial and total 
unweighted Patterson functions, repeating here a procedure first proposed by Gratias 
[3] and Cahn and co-workers [4]. Rational cross sections of these Patterson functions 
are shown in figure 5. From the density features visible in the figure and remembering 
that Patterson functions illustrate self-overlapping of the structure upon translation, it 
is easy to conclude that the A3,,, volumes in the 6D cube are sited at vertex (OR) and 
mid-edge (ME) positions for A atoms and at body-centre (BC) positions for Li atoms. 
The partial structure factors should be written: 

6 1 
F~(e.5) = V ,  [ Go~(Qpcrp) + r = l  W Q 6  . r,)] (4) 

G functions are the Fourier transforms of the A3,,, volumes, Vb is the volume of the 6D 
cube, i = 1-6 corresponds to the six different mid-edge positions and 6 is the half- 
diagonal vector of the 6~ cube. 

As a first approximation, FL,(Q6) can be calculated using equation (5) and a spherical 
A3,, (BC) whose volume is deduced from the Patterson functions (figure 5)  along with 
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Figure 4. Patterson functions of the 6D periodic strncture for (a) A, (b)  Li and (E) A + Li 
atomic sites. The figures show a slice ofthe 6D space containing one perpendicular and one 
parallel fivefold axes 

composition and density data 1211. This 'equivalent' A3,,,(Bc) sphere has a radius of 
8.54 A. 

The strongest experimental reflections are mainly influenced by size rather than 
shape details of A3,,,. Thus, it is reasonable to attribute signs to the strong experimental 
Fh (typically for QpeT < 0.5 in units of h / a )  identical to those of the spherical approxi- 
mation. Now, signs of the corresponding FA can also be derived since the FA/FLi 
relative signs have been experimentally determined. Thisgives about thirty independent 
reflections with the phases properly reconstructed for both FA and FLi experimental 
partial structure factors. 

In thelaststep, the above thirtystrongestpairsofpartialstructurefactorsareFourier 
transformed in the 6D space. From the deduced partial density distribution, radii equal 
to 6.5 and 5.6 8, are obtained for the spherical equivalent A3,,, volumes of the A atoms 
(vertex and mid-edge respectively). Again using equation ( 5 ) ,  calculated values of FA 
are used to attribute signs to the remaining experimental FA and then FLi; FA and FL 



10 M de Boissieu et al 

Figure 5. (a) Density COU~OUIS of the A(oR) volume in a plane containing two twofold axes 
ofthecomplementaryspace. (b)Sameasin(a) but iortheLi[BC)voIume. (c,d)Sameasin 
(0) but for two different cross sections of the  ME) volume 

having their phases (0 or 3c) reconstructed unambiguously are given in table 1. The final 
6D densities are illustrated in figure 5. The body-centre lithium volume is basically an 
8 8, sphere with twenty added ‘bubbles’ along the threefold axes and twelve holes dug 
along the fivefold axes. The vertex A volume is also basically a 6.8 8, deformed sphere 
with added small volumes along the fivefold directions. Finally, the mid-edge A volume 
is more complicated, with fivefold axial symmetry and cr0.s~ sections roughly circular in 
a plane perpendicular to its fivefold axis, roughly elliptical in a plane containing the 
fivefold axis and (1, r, O)FT direction. The mid-edge volume has only a sm symmetry, 
the fullicosahedralsymmetry beingrecovered when thesix mid-edge sitesareconsidered 
altogether. 

A 3~ structure in our physical space can then be easily obtained by selecting the 
density part which has perpendicular coordinates equal to zero. Before doing that, the 
6~ structure is going to be improved by modelling. 
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Table 1. Experimental values of the partial structure factors FA, FLi with their phases 
reconstructed; Q,, and Qpew are also given, along with multiplicity p. indexing q0 and (N, 
M) ~91. 

4 4 30 
6 9 20 
8 8 60 
8 12 30 
10 13 60 
12 12 60 
12 16 12 
14 21 60 

1.057 0.743 1 0 1  0 0 0 0.31 -0.25 
1.481 
1.495 
1.711 
1.820 

0.398 
1.051 

0 1 1  0 0 1 
1 1 1  0 0 - 1  

1.12 
-0.27 

-0.88 
0.13 
0.48 
0.43 

0.460 
0.843 
1.288 
0.874 
0.608 

1 0 1  1 0 - 1  
1 1 1  0 1 - 1  
2 1 0  1 0  0 
1 1 1  1 1 - 1  
2 0 1  1 0 - 1  
1 2 2  0 0 0 
2 1 1  1 1 - 1  
1 2 2  0 1 0  
1 2 0 - 1  2 0 
2 1 1  2 0 - 1  

-0.40 
-0.34 
-0.20 
-0.38 

0.25 
-0.18 
-1.36 
-0.26 
1.83 

-0.29 

1.831 
2.011 
2.263 

-0.02 
0.36 
-0.40 
-0.39 
-1.53 

18 25 60 
18 29 12 

2.498 
2.632 
2.640 
2.768 
2.837 

0.960 
0.167 

20 28 120 
20 32 30 
22 33 120 

0.987 
0.284 
0.762 
0.796 
0.796 
0.489 
1.089 
0.540 
0.540 
0.890 
0.890 
0.890 
0.919 
0.919 
0.671 

0.329 
0.402 
0.813 
0.565 
0.565 
0.176 
0.764 
0.764 
0.435 
0.492 

o.io9 

0.01 
1.13 
0.00 

24 36 60 
24 36 20 

2.963 
2.963 

2 1 1  2 1 - 1  
2 2 0  0 2 0 

0.21 
0.31 
1.91 

-0.36 
-1.26 
o.n 

-0.47 
-0.24 
-0.52 
0.05 
0.55 
-0.09 
0.45 
0.18 
-0.21 
0.08 
0.00 
0.29 
-0.14 
-1.28 
0.67 
0.21 
-0.13 
0.20 
1.16 

-0.27 
0.16 
-0.39 
0.65 
0.33 
0.14 

26 41 60 
28 40 120 
28 44 12 
28 44 60 
30 45 20 
30 45 60 
30 45 60 
32 48 120 
32 48 30 
34 53 60 
36 56 120 
38 61 60 
40 64 60 
42 65 60 
46 73 60 
46 73 60 
52 84 30 
56 88 60 
56 88 60 
58 93 60 
60 96 20 
60 96 60 
62 97 60 
62 97 120 
64 100 120 
64 100 120 
66 105 60 
66 105 60 
68 108 120 
70 113 60 
72 116 12 
72 116 60 
74 117 60 
74 117 60 
78 125 120 

3.139 
3.146 

2 2 0 - 1  2 0 
2 2 2  1 0 - 1  

3.254 
3.254 

3 1 1  1 1 - 1  
2 2 1  0 2 - 1  

3.312 
3.312 
3.312 
3.421 
3.421 
3.575 
3.676 
3.820 

2 2 1 - 1  2 - 1  
3 0 1  2 0 - 1  
2 2 1  1 2 - 1  
3 1 1  2 0 - 1  
2 2 0 - 2  2 0 

-0.49 
-0.31 
-0.10 
-0.28 
0.00 
-0.19 

0.25 
1.06 

-0.32 
0.43 

3 1 1  2 1 - 1  
2 2 3  0 0 1 
3 2 1  0 2 - 1  
2 3 1 - 1  2 1 
2 3 0 - 2  2 0 

3.914 
3.963 
4,185 
4.185 

3 1 2  2 1 - 2  
2 3 0 - 1  3 0 

0.52 
0.09 

4.478 
4,601 
4.601 

2 3 0 - 2  3 0 
3 3 0 - 1  3 0 
3 1 2  3 1 - 2  
3 3 1  0 3 - 1  
3 3 1 - 1  3 - 1  

2.22 
-0.12 
-0.43 
-0.85 
-1.27 

4.717 
4.794 
4.794 
4.834 
4.834 
4.909 
4.909 
5,017 
5,017 
5,090 
5.194 
5.264 
5.264 
5.301 
5.301 
5.469 

0.492 
0.861 

4 1 2  2 1 - 2  
3 3 0 - 2  3 0 

1.12 
-0.49 

0.861 
0.891 
0.891 
0.633 
0.633 
0.673 
0.242 
0.334 
0.334 
0.782 

3 4 1 - 1  2 0 
4 1 3  2 1 - 1  
3 3 2 - 1  3 0 
4 2 2  1 2 - 2  
4 0 2  3 0 - 2  
4 2 3  2 0 - 1  
4 1 2  3 1 - 2  
4 2 2  2 2 - 2  
4 3 1  0 3 - 1  
4 3 1 - 1  3 - 1  
4 3 1  1 3 - 1  
4 3 2  0 3 - 1  

0.00 
-0.40 

0.00 
0.57 
0.87 
0.48 
0.94 
3.15 
0.00 
-0.29 
-0.26 
0.33 

0.00 
0.35 
0.00 
0.22 
0.01 

-1.61 
0.12 
0.00 
-0.09 
0.14 
-0.32 

a m  

0.782 
0.519 

confinued overleaf 
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Table 1. (continued) 

,SO 128 30 5.535 0.568 
80 128 120 5.535 0.568 
90 145 60 5.886 0.373 
92 148 120 5.948 0.438 
98 157 120 6.129 0.592 

100 160 60 6.189 0.635 
100 160 60 6.189 0.635 
100 160 30 6.189 0.635 
102 165 20 6.275 0.094 
104 168 60 6.333 0.248 
106 169 120 6.364 0.749 
108 112 60 6.421 0.784 
108 172 60 6.421 0.784 
108 172 120 6.421 0.784 
124 200 120 6.911 0.377 
130 209 60 7.068 0.548 

2 4 0 -2 4 0 1.59 
4 1 3 3 1 -2 -0.38 
3 4 0 -2 4 0 2.18 
4 1 3 4 0 -2 1.06 
3 5 1 -2 3 1 -0.57 
4 4 1 0 4 - 1  0.43 
5 2 2 3 1 -2 0.32 
4 0 3 4 0 -3 0.30 
4 4 4 1 1 1 0.74 
5 3 2 1 3 -2 -0.26 
4 4 4 2 0 1 0.33 
5 1 3 3 ,1 -3 -0.47 
4 4 1 -2 4 -1 0.00 
0 3 5 0 -2 4 0.00 
4 5 1 -2 4 0 1.26 
4 5 2 -2 4~ ~0~ 1.00 

-0.22 
0.14 

-1.08 
0.09 

-0.27 
0.42 
0.16 

-0.01 
-2.19 

0.18 
0.71 

-0.09 
0.00 
0.00 
0.30 
0.30 

6. Modelling further. How and why 

The partial structure factors being measured and their phases reconstructed, one may 
wonder why we are trying to model a structure when the density distributions, either in 
the 6~ periodic lattice or in the 3D physical space, can be obtained by direct Fourier 
transformsof these partial structure factors. It isa reasonable approach which, however, 
may suffer some drawbacks. Most of these drawbacks have equivalents in classical 
crystallography where they have been overcome through model fitting procedures. A 
typical example is the so-called termination or truncation effect [25] which is even more 
dramaticin quasicrystallography because of the relatively restricted rangeofinvestigated 
Qpem values. Some other difficulties, for instance parallel components of (or not flat) 
A3,,, volumes [2], induce additional parameters which must be adjusted. 

On the other hand, the experimental A3,, volumes may have features which are 
undesirable as they generate unphysically short atomic distances into the 3D structure. 
Thus, the A3,,, have to be empirically 'retailored' for these too short distances to be 
removed. The principle ofsuch a tailoring is illustrated in figure 6 which shows a rational 
cross section of a6D hypercubicstructure, with A3,,,,volumeson body-centre and mid- 
edge sites. Considering two of these volumes, labelled A(1) and A(2) in the figure, and 
the distance R,,, between these volumes as measured along the physical axis of the cross 
section, the distance Rpar is an actual atomic distance of the 3D structure if, and only if, 
a non-empty set of points is generated when A(2) is intersected by the Rpar translated 
A(1). This is equivalent to considering the intersection of the projection of A(l) and 
A(2) into the R3,, space in which their centres are R,,, distant from each other. Thus, 
if the atomic distance Rpar is to be avoided, holes of proper sizes and locations have to 
be dug out of A(l) or/and A(2) as exemplified in figure 6. A detailed report on such 
tailoring procedures has been published by Duneau and Oguey [26]. 

Scanning the distances between sites systematically results in a list of what has to be 
avoided for physical reasons. The strongest constraint corresponds to the distance 
between the A3,, volumes related to the body-centre Li sites and the mid-edge A 
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0 

Firmre 6. Fivefold axis slice (a) of the 6D space (schematic) showing 'overlapping' between .. - 
BC 3nd SIE volumes Atl)  and At21 The shon distance R,, uill shou up along a physical 
(par)fivefoIda..is bcciuscA(l)and A(2) hareo\erlappin3pans(in the broken 1oop)uhcn 
projenedoniorhepcrp- fivefoldasn(b). When looked atinatwofoldaxis planeofthc pclp- 
space IC) the A(1) volume LS the uhire 'sphere'and the A(2) volumes are the grey ellipses. 
Clearly. pansofihe uhte'sphcre' ha\c lo be dugout ifoverlapping has to be avoided 

sites, which is equal to 0.5978, along a physical (par) fivefold axis (figure 6). This is 
unacceptably short and is removed by digging holes of the proper volume along the 
twelve fivefold axes of the BC volume. To restore the lost density, additional small 
volumes must be added where room is available. Figure 6 and the experimental results 
illustrated in figure 5 show that a clear possibility is around the twenty threefold axes. 

The same analysis can be done for non-physical distances between ME-ME, OR-ME 
and~~-~~pairsofA3,,volumes. The whole rocedureresultsinasetofA3,,models. 
The vertex AOR volume is a sphere of 6.8 8: radius with an empty central hole of 
2.3 A radius; the mid-edge AME volume is an axial elli se sited on a fivefold axis with 
geometrical size given by a = 4.15 8, and 6 = c = 6.34 1; the body-centre LiBCvolume 
is a sphere of 8.5 8, radius with elliptical holes on fivefold axes (same a,  6 and c, as the 
ME site) and additional pieces of small spheres (radius 3.5 A) on the threefold axes 
(figure 7). 

Figure1.Crosssectionin the perpendicularspace 
of the body ceiitre volume as proposed in the 
model derived from diffraclion data (full line). 
Compare with figure 5(b). Hatched areas within 
the brokenlinesshow the stellation that generates 
asystematicdewrationof lhes~p~threefold axes. 
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The direct cut of the above 6D structure by our physical 3D space generates atom 
positions into a cluster whose size is only limited by computer time. This is of course a 
somewhat brute force procedure but quite useful anyhow. We used it to build aspherical 
cluster and calculate pair distribution functions. These pair distribution functions are 
shown in figure 8 where they are compared with the one directly measured and reported 
in 161. The result is quite satisfactory: all atomic distances and weight of the pairs are 
reasonably reproduced, without spurious unphysical short distances. In particular, the 
model fits positions and widths of the first distance peaks, which means that, contrary 
to the ico-AIMn structure [Z], there are no parallel components in the A3,,, volumes of 
the ico-ALCuLi system, at least down to a limit of about 0.05 .& 

Further validation of the model requires calculation of its Fourier components and 
comparing them to the diffraction data (single crystals andpowders). 

The adjustment of the model to data was attempted in a way reminiscent of classical 
crystallography with a scaling factor, plus a Debye-Waller factor (DW) for each of the 
three different A3,,,, volumes as free parameters. The relative Al/Cu compositions 
were alsolet freeon the twoAoRandAMEvolumesinorder tosave apossibleunobserved 
weak order to be compared with that existing in the crystalline R phase [27]. 

Residualfactors(R, w ~ ) , ~ * a n d ~ w a r e g a t h e r e d i n  table2.TheDwfactorsareabout 
twice those previously measured in the R phase 127) but still are reasonable values. The 
AI/Cu relative concentrations also have little influence on the fit qualities. The retained 
values obtained from x-ray data are c(Al) = 0.879 for the mid-edge sites and 0.716 for 
the vertex sites, instead of the 0.84 value that would correspond to total randomness. 
Perpendicular Debye-Waller factors have no influence on the fit quality, suggestingthat 
isotropic phason disorder is not a relevant property of the system. 

The somewhat large value of the residual factors WR might be related to the weak 
peaks not being fitted correctly, because of misdefined details in the A3,, volumes. An 

R (A)  
F p r c  8. Partial pair distribution functions. 
Model (. , .) of the present work compared with 
experimental results from [6] (-). 

 CL^^- a5 1.0 

0, (2xla unit) 
Figure 9. FLI calculated with the present model. 
Differences with a spherical approximation show 
up mainly at relatively large Q,, values. 
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Table 2. Residual factors, x' and Deby+WaUer factors as obtained from fitting the model 
to the single crystal data. 

X-rays 0.08 0.08 0.17 24 2.22(6) 2.25(4) 2.6 
Neutron 0.08 0.11 0.14 4 2.05(9) 1.91(6) 2.6 

Table 3. Total structure facton as calculated, Fmodc,2 and measured F,,,, for the neutron 
single crystal data. 

N 

4 
6 
8 

10 

4 
9 

12 
13 
16 
32 
41 
44 
44 
45 
53 
61 
64 
73 
13 
84 
93 
96 
96 
97 

30 
20 
30 
60 

1.06 0.74 1 0 1 0 0 
0.40 0 1 1 0 0 
0.46 1 0 1  1 0  
0.84 1 1 1  0 1  

0 
1 

-1 
- 1  
-1 

0 
0 

-1 
-1 
-1 
-I 
-1  
-1 
-2 

0 

1.26 1.6 
5.32 28.3 

-2.41 5.8 
-1.84 3.4 

2.1 0.6 
24.1 4.1 
6.0 1.3 
1.6 0.5 

1.48 
1.71 
1.82 
2.01 
2.77 
3.14 
3.25 
3.25 
3.31 
3.57 
3.82 

12 
20 
26 
28 
28 
30 

12 
30 

0.87 1 1 1 1 1 
0.28 1 2 0 -1 2 

-1.38 1.9 3.2 0.3 
5.05 25.5 22.7 2.8 
1.66 58.6 61.9 1.7 

-5.34 28.5 24.0 1.2 
2.49 6.2 6.8 1.0 

-1.91 3.9 5.1 0.7 

60 
12 
60 
20 
60 
60 
60 
60 
60 
30 
60 
20 
60 
60 
60 
60 

0.49 2 2 0 -1 2 
0.54 3 1 1 1 1 
0.54 2 2 1 0 2 
0.89 2 2 1 -1 2 
0.67 3 1 1 2 1 
0.33 3 2 1 0 2 
0.40 3 2 1 1 2 
0.57 3 1 2 2 1 
0.57 2 3 0 -1 3 

34 
38 
40 
46 
46 

.-2.05 4.2 
5.12 26.2 

-1.94 3.8 
1.69 2.9 
0.17 0.6 

3.5 0.3 
27.1 1.5 
4.7 0.6 3.91 

4.19 
4.19 

3.3 0.8 
3.2 0.8 

52 
58 

4.48 
4.12 

0.17 2 3 0 -2 3 
0.43 3 3 1 0 3 
0.49 3 3 1 -1 3 
0.49 4 1 2 2 1 
0.86 3 3 0 -2 3 

0 
-1 

5.36 28.7 30.6 5.0 
-1.95 3.8 5.2 1.0 

23.5 2.7 M) 
60 
62 
66 
70 

4.79 
4.79 
4.83 

-1 
-2 

0 
-2 
-2 
-2 
-1 
-1 

-5.22 27.3 
3.25 10.5 

-0.95 0.9 
2.11 7.7 
5.19 26.9 
9.80 96.1 

-1.46 2.1 
1.62 2.6 

8.9 0.9 
3.0 0.5 

1 05 
113 
116 
116 

5.02 
5.19 
5.26 
5.26 
5.47 

0.63 4 0 2 3 0 
0.24 4 1 2 3 1 

7.1 2.2 
23.3 1.3 

101.6 3.0 
3.2 0.8 
3.8 0.6 

72 
72 

12 
60 

0.33 4 2 2 2 2 
0.33 4 3 1 0 3 
0.52 4 3 2 0 3 
0.57 2 4 0 -2 4 
0.37 3 4 0 -2 4 
0.31 5 2 2 2 2 
0.44 4 1 3 4 0 
0.09 4 4 4 1 1 
0.41 5 3 2 2 3 
0.30 5 4 3 1 3 
0.38 5 4 4 2 1 
0.55 5 4 4 2 2 

78 
80 
90 
90 
92 

102 
110 

125 
128 
145 
145 
148 

120 
30 
M) 

5.54 
5.89 

0 
0 

5.01 25.1 
7.89 62.2 

26.4 2.1 
61.6 2.1 

12 
120 
20 
60 

5.89 
5.95 

-2 
-2 

7.44 55.4 
2.93 8.6 

62.5 3.0 
8.4 2.1 

165 
177 

6.28 
6.50 
6.86 
6.91 
7.07 

1 
-2 

5.50 30.3 
1.97 3.9 

28.6 2.6 
5.7 2.1 

122 
124 

197 
200 
209 
249 
252 
252 
304 
313 
336 

60 
120 
60 
M) 
60 
20 
60 
60 
30 

-1 
0 
0 

- 1  
-2 
-1 

0 
0 

-4 

-1.56 2.4 
3.19 10.2 
3.44 11.9 

3.9 1.1 ~~ 

8.8 1.1 
15.5 1.0 130 

154 
156 
156 
188 
194 
208 

7.71 
7.16 

0.20 6 4 4 2 2 
0.30 6 4 3 2 3 

8.32 69.2 
3.17 10.1 

-5.08 25.8 

73.1 2.5 
8.4 1.0 

21.0 2.0 
8.7 1.0 

10.3 1.0 
23.5 3.0 

7.76 
8.52 
8.65 
8.96 

0.30 5 5 1 -1 5 
0.20 6 5 5 2 2 
0.45 6 6 4 0 3 
0.35 6 0 4 6 0 

3.01 9.1 
3.45 11.9 
5.13 26.3 
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illustration of the above statement is shown in figure 9 where the Fourier transform of 
the non-spherical BC(Li) volume appears as sensitive to shape details at large QpeV 
reflection only. 

For the powder diffraction data the R factors are of the order of 0.15 and x2 is about 
equal to 1-5 for the five contrasts. A quantitative comparison between model and data 
is presented in tables 3 and 4. 

M de Boissieu et al 

Table 4. Same as table 3 but for x-ray data. 

4 4 30 1.06 
6 9 20 1.48 
8 8 60 1.50 
8 12 30 1.71 

10 13 60 1.82 
12 12 60 1.83 
12 16 12 2.01 
14 21 60 2.26 
18 25 60 2.50 
18 29 12 2.63 
20 28 120 2.64 
20 32 30 2.77 
22 33 120 2.84 
24 36 60 2.96 
24 36 20 2.96 
26 41 60 3.14 
28 40 120 3.15 
28 44 12 3.25 
28 44 60 3.25 
30 45 20 3.31 
30 45 60 3.31 
30 45 60 3.31 
32 48 120 3.42 
34 53 60 3.57 
36 56 120 3.68 
38 61 60 3.82 
46 73 60 4.19 
46 73 60 4.19 
52 84 30 4.48 
56 88 60 4.60 
56 88 60 4.60 
58 93 60 4.72 
60 96 20 4.79 
60 96 60 4.79 
62 97 60 4.83 
64 100 120 4.91 
66 105 60 5.02 
66 105 60 5.02 
68 108 120 5.09 
70 113 60 5.19 
72 116 12 5.26 
74 117 60 5.30 
74 117 60 5.30 
78 125 120 5.41 

0.74 
0.40 
1.05 
0.46 
0.84 
1.29 
0.87 
0.61 
0.96 
0.17 
0.99 
0.28 
0 76 
0.80 
0.80 
0.49 
1.09 
0.54 
0.54 
0.89 
0.89 
0.89 
0.92 
0.67 
0.71 
0.33 
0.57 
0.57 
0.17 
0.76 
0.76 
0.43 
0.49 
0.49 
0.86 
0.89 
0.63 
0.63 
0.67 
0.24 
0.33 
0.78 
0.78 
0.52 

1 0 1 0 0 0 1.31 
0 1 1 0 0 1 5.10 
1 1 1 0 0 -1 -0.69 
1 0 1 1 0 -1 -1.61 
1 1 1 0 1 - 1  -1.88 
2 1 0 1 0 0 -0.55 
1 1 1 1 1 -1 -1.49 
2 0 1 1 0 -1 1.07 
1 2 2 0 0 0 -0.97 
2 1 1 1 1 -1  -6.10 
1 2 2 0 1 0 -1.43 
1 2 0 - 1  2 0 9.91 
2 1 1 2 0 - 1  -1.08 
2 1 1 2 1 -1 0.32 
2 2 0 0 2 0 1.13 
2 2 0 - 1  2 0 7.84 
2 2 2 1 0 -1 -1.24 
3 1 1 1 1 -1 -5.29 
2 2 1 0 2 -1 3.33 
2 2 1 - 1  2 - I  -1.62 
3 0 1 2 0 -1 -1.66 
2 2 1 ~1 2 r - t  ~-0Y16 
3 1 1 2 0 - 1  -0.99 
3 1 1 2 1 - I  -1.94 
2 2 3 0 0 1 0.88 
3 2 1 0 2 - 1  3.11 
3 1 2 2 1 -2 1.50 
2 3 0 - 1  3 0 0.45 
2 3 0 -2 3 0 8.50 
3 3 0 -1 3 0 0.05 
3 1 2 3 1 -2 -1.47 
3 3 1 0 3 -1 -2.67 
3 3 1 -1 3 -1 -4.07 
4 1 2 2 1 -2 3.61 
3 3 0 -2 3 0 -1.02 
4 1 3 2 1 -1 -0.81 
4 2 2 1 2 -2 193 
4 0 2 3 0 - 2  2.36 
4 2 3 2 0 -1 1.35 
4 1 2 3 1 -2 2.35 
4 2 2 2 2 -2 9.81 
4 3 1 -1 3 - 1  -0.65 
4 3 1 1 3 - 1  -1.22 
4 3 2 0 3 -1 1.04 

- 
1.7 

26.0 
0.5 
2.6 
3.5 
0.3 
2.2 
1.1 
0.9 

37.2 
2.0 

98.2 
1.2 
0.1 
1.3 

61.5 
1.5 

n . 9  
11.1 
2.6 
2.8 
0.0 
1 .O 
3.8 
0.8 
9.7 
2.3 
0.2 

77.3 
0.0 
2.2 
7.1 

16.5 
13.0 
1.0 
0.7 
3.7 
5.6 
1.8 
5.5 

96.3 
0.4 
1.5 
1.1 

1.9 0.1 
26.1 0.5 
2.0 0.2 
2.7 0.1 
2.2 0.2 
1.2 0.1 
2.8 0.1 
0.9 0.2 
1.3 0.1 

39.7 0.7 
1.5 0.2 

95.6 1.6 
1.1 0.1 
0.4 0.1 
1.5 0.1 

60.9 1.1 
2.3 0.2 

25.1 0.5 
10.3 0.3 
3.1 0.1 
1.4 0.1 
0.3 0.1 
1.2 0.1 
3.3 0.1 
0.8 0.1 
9.6 0.3 
3.2. 0.1 
0.2 0.1 

78.8 1.3 
0.3 0.1 
1.8 0.1 
7.9 0.3 

14.2 0.4 
14.2 0.4 
2.2 0.1 
1.2 0.1 
3.5 0.2 
7.2 0.3 
2.1 0.1 
5.1 0.2 

100.0 1.6 
0.8 0.1 
0.5 0.1 
1.6 0.1 
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Table 4. (continued) 

80 128 
80 128 
90 145 
92 148 
98 157 

100 160 
100 160 
100 160 
102 165 
104 168 
106 169 
108 172 

30 5.54 
120 5.54 
60 5.89 

120 5.95 
120 6.13 
60 6.19 
60 6.19 
30 6.19 
20 6.28 
60 6.33 

120 6.36 
60 6.42 

0.57 
0.57 
0.37 
0.44 
0.59 
0.63 
0.63 
0.63 
0.09 
0.25 
0.75 
0.78 

2 4 0 -2 4 0 4.19 17.6 18.5 0.5 
4 1 3 3 1 -2 -0.72 0.5 1.0 0.1 
3 4 0 -2 4 0 5.m 25.8 27.4 0.6 
4 1 3 4 0 -2 2.88 8.3 7.7 0.3 
3 5 1 -2 3 1 -1.56 2.4 2.2 0.2 
4 4 1 0 4 -1 1.31 1.7 1.4 0.1 
5 2 2 3 2 -2 0.89 0.8 0.7 0.1 
4 0 3 4 0 -3 0.33 0.1 0.5 0.1 
4 4 4 1 1 1 2.01 4.0 2.7 0.2 
5 3 2 1 3 -2 0.48 0.2 0.3 0.1 
4 4 4 2 0 1 0.87 0.8 1.0 0.1 
5 1 3 3 1 -3 -0.97 0.9 1.2 0.2 

7. Atomic structure of the AlCuLi quasicrystal in 3~ physical space 

As already stated, the straightforward method to obtain atomic positions is to generate 
their three coordinates as intersections Of the6D periodicstructure by our physical space. 
An alternative way of getting these coordinates is to Fourier transform the partial 
structure factors (with their phases) directly in the 3~ space as explained in [28]. Both 
methods give the same results as exemplified in figure 10. According to observations 
made on pair distribution functions [6], a more physical description may be attempted 
within a comparison of the ico-phase structure with that of the cubic R-phase [27]. The 
structure of the R-phase as determined by Audier et a1 [27] belongs to the Zm3 (BCC) 
space group with a lattice parameter of 13.9056 A. The AI, Cu, Li atoms are distributed 
over shells around the origin. The set of successive polyhedra from centre to surface 
forms the so-called ‘Samson’s complex’ which contains 104 atoms. The structure of R- 
A15CuLi, can then be described as a CsCI-type packing of distorted Samson polyhedra 
linked in two ways. 

(i) Along edges of the cubic cell by sharing two aluminium atoms (site 12e). 
(ii) Along the eight body diagonals of the cube by sharing a common hexagonal face 

of the polyhedra (site 48h). The remaining lithium atoms (site 12e) are found in the 
interstices formed within the Samson polyhedron packing. They cap the pentagonal 
faces of a truncated icosahedron. The site 12e (Li atoms) are located at 24 of the 32 
vertices of a ‘large’ rhombic triacontahedron of radius r = 8.18 A. The eight remaining 
vertices coincide with the Li in 16f sites already considered in the formation of the 
underlying dodecahedral shell. The distorted truncated icosahedra have not a perfect 
icosahedral symmetry which would have forced the atoms in 48h sites to emerge at the 
surface of the outer triacontahedral atomic shell. There are Iwo triacontahedral shells 
(so-called ‘small’ and ‘large’ heretofore) with diameters in a ratio practically equal to 
the golden mean r .  All the AI/Cu atoms are in the shells of a ‘soccer ball’ (small and 
large icosahedron plus external shell of the truncated icosahedron) while Li atoms are 
on the external shell of the large and small triacontabedra. 

The conditions to be fulfilled by the A3,, volumes for generating a given type of 
atomic clusters in the cut procedure have been analysed by several authors [15,26,29]. 
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Figure 10. Part (a) of the figure shows a schematic of a fivefold axis slice of the 6~ model 
structure, with cross sestions of the vertex, mid-edge and bodycentre volumes. We have 
highlighted an example of a distance which is too short in the loop, as detailed in figure 6. 
The dashed rectangle shows the acceptance domain for ME-ME distances through the central 
holeof thevertexvolume. Tnephysicalfivefoldaxis[IrO],,,cmssestheA3,,volumesat 30 
atomic positions as shown in figure 10(b) which presents a slice of the SD atomic density as 
deduced from the model (large and small circles are A and Li atoms, respectively). Cross 
sections ofsmall (large) triacontahedra and rhombohedral riles are also shown. The model 
density (10(b)) compares quite well with the corresponding density map as directly obtained 
F,ommofthe experimental FA (lO(c)) and Fb (10(d)). 

The basic principles are very similar to those used in section 6 in the procedure of 
identification and elimination of the too short atomic distances and can he worked out 
in the complementary ( p e p )  space. A cluster is completely defmed when atomic bonds 
between centre-to-shell atoms are identified. For instance, the presence of icosahedral 
clusters in the 3D structure will correspond to the existence of families of twelve equal 
atomic distances converging along fivefold axes. In the 6D Structure, this is equivalent 
to say that a given A3,,, volume has twelve neighbours distributed along pertinent 
directions and in such a way that the cut procedure generates the proper atomic pairs. 
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Figure 11. Schematic view of the definition of the 
acceptance domain for small icosahedra as the 
common region between a vertex and twelve 
neighbour mid-edge A3,, when projected into 
the perpendicular space. This is a ZD cross section. 

Figure 12. Representation of the acceptance 
domains for small icosahedra (full line circles) 
and for soccer-balls (broken line circles) when 
projected on the mid-edge volume. (a) is a cross 
Section containing the fivefold axis of the ellipse; 
( b )  is a cross section perpendicular to the fivefold 
axis with two pentagons (size 4.25 A) of accept- 
ancedomainsat0.27Aoneachsideoftheellipse 
equatorial plane. 

In the 6D structure model, one vertex AOR volume is surrounded by twelve mid-edge 
Am volumes. The cut procedure generates A-A distances equal to 2.528 ?. if the 
projected of the Aon and AME into the perpendicular space have parts of their volumes 
in common. This is visible in figure lO(a). The twelve projected A,, having a small 
common volume (figure ll), roughly a sphere of 1.65A radius, indicates that small 
icosahedra of A atoms will be found in the 3D atomic structure. This wmmon volume 
is called the acceptance domain and gives, in particular, the occurrence rate of the 
corresponding clusters into the structure. As shown in figures lO(a), 11 and 12 the 
acceptance domains corresponding to the external shell of the 'soccer balls' are identical 
to that of a small icosahedra; both correspond to the common volume in perpendicular 
space of the 12 AME adjacent to a given AOR. More generally it can be demonstrated that 
all the shells present in a soccer ball have the same acceptance domain though coming 
from different association of MpV volumes. 

Thus, as summarized in table 5, all the atomic shells typical of the R-phase structure 
were also found in the ico-phase, up to the so-called large triacontahedron. The cross 
sections at z = 0 of the 3D density distribution presented in figure 13 show also very 
clearly the presence ofthe two (smallandlarge) triacontahedra and theothericosahedral 
clusters. The acceptance domainsmay be finelyfacetted but thesphericalapproximation 
is sufficient to provide at least an estimate of the proportion of AI/Cu atoms within the 
soccer ball clusters. This proportion is found equal to only 28%, while soccer balls 
contain all the atoms of the R-phase structure. These soccer balls are weakly connected 
only along threefold axes by having hexagonal faces in common; this is at variance with 
the (distorted) soccer balls of the R-phase which share additionally AI atoms along 
twofold axes. The drawing shown in figure 12 illustrates that the acceptance domain of 
the soccer balls cannot be enlarged significantly; the limitation comes from the size of 
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the equatorial circle of the ellipsoidal Am volume which, in turn, cannot be larger if too 
short AME-LiB, distances have to be avoided (figure 6). On the contrary, the acceptance 
domain for the small icosahedra and small triacontahedra could be enlarged without too 
much inconvenience by elongating the ellipsoidal A,, volume (see again figures 6 and 
12) in its fivefold directions. 

Figure 13.Crosssectionsofthe3Datomicdensity correspon'ling to twofold (a) and fivefold 
(b)  planes. Traces of the various icosahedral clusters are visible (A = large and medium 
circles; Li = small circles) as three planes composite and Soccer balls (large decagons) in the 
fivefold map and triacontahedra in the twofold map. 
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From a model previously proposed by Audier and Guyot [30], it is known that an 
acceptance domain defined by a a?-deflated triacontahedron (edges equal to j.Oj/r' 8, 
and volume equivalent to a sphere of 1.7 8, radius) corresponds to a idated three- 
dimensional Penrose tiling of the space (edges of 5.505 x r3 A). Thisdemonstrates that, 
in the present determined structures of the AlCuLi quasicrystals, most of the large 
triacontahedra containing the soccer balls are on the vertices of a r3-inflated 3DF-T. As 
already stated these clusters would contain about 28% of the AI/& atoms and 7% of 
the Li atoms. As it is not possible to increase the acceptance volume for these large 
triacontahedra, it is sensible to try to complete the structure with small triacontahedra. 
Providing a proper acceptance domain. most of them would indeed be on the face 
diagonals of the tiles of the z3-inRated 3DPT and also on the prolate triad axis. But 
the decoration would not be identical from tile to tile. Thus, even in its r3-inflated 
modification, a 3DPT may not be a good approach to this quasicrystal structure. Looking 
for icosahedral clusters of the sort existing in the R-phase is of course a little restrictive. 
The rather small fraction of atoms included in the soccer balls is a measure of the degree 
of similarity between R- and ico-phases and suggests that other types of clusters must be 
involved in the structure of the ico-phase. 

Incidentally, it is also interesting to confront the structure proposed in the present 
work with models in which the atomic decoration is made directly on the elementary 
Penrose lattice (edges of 5.05&, as proposed for instance by Van Smaalen and co- 
workers[31,32]. On theselectedcrosssectionsofthe3Ddensityshowninfigures lOand 
13, images of rhombohedral tiles are indeed visible. The AI atoms generated by the cut 
of the 6~ vertex volume are sited on 3D vertex of the 3DPT, but due to the central hole of 
the A,, volume and its external size, some vertices are unoccupied. The AI atoms 
generated by cut of the mid-edge volume are also in mid-edge positions in the 3DFT, but 
again with partial occupancy only. The Li atoms are generated mostly on the triad axis 
of the prolate rhombohedra, in a r j l / r  partition, but also occasionally at edge positions 
at 1.93 8, of unoccupied vertices. Thus, when the structure is assumed to be 3Dm-like, 
the decoration of the tiles is not unique. 

In their attempts to describe the structure in terms O ~ ~ ~ D P T  with a single type of tile 
decoration, Van Smaalen 1311 and Elswijk et al[32] had to inject a nonphysical AICu/ 
Li disorder into the structure; the difficulties that they encountered might be good 
evidence of how much a 3DPT is non-physical and not suitable for specifyingquasicrystal 
structures. The 6D structure as proposed by Van'Smaalen [33], based on x-ray single 
crystal data and symmetry conditions for the possible A3,, volumes, is also a primitive 
hypercubic lattice with atomic volumes at vertex and mid-edge positions for AlCu atoms 
but the body centre volume was not observed because x-rays are not sensitive to lithium 
atoms. 

Henleyand Elser[34] had also previously proposeda tiling model with three different 
tiles, namely the classical prolate and oblate rhombohedra plus a rhombic dodecahed- 
ron. The proposed decoration had something of what we have observed: AljCu atoms 
on vertex and mid-edgepositions; Li atomsonedgesofprolates inside thedodecahedron 
at 1.93 A of their empty centre. 

Qiu and Jaric (351 have recently reported on a new method to reconstruct the phases 
of the measured structure factors. These phases were considered as parameters to be 
determined by the best fit between a hypothetical rational approximate of the quasi- 
crystal and real crystal x-ray data (present work and [27]) .  They have reached an 
interesting specification of the AI/Cu 6D substructure (Li not visible with x-rays). Their 
A3,.p volumes are very similar, with differences in details, to those reported in the 
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Figure 14. Structure of the 3D density as described by families of twofold atomic planes as 
obtained from projections of atom positions contained into a 40 X 40 X 40 A cube. Am. 
AME and Li,c atoms are shown as large, medium and small open circles, respectively. Solid 
and dashed lines exemplify more and less dense planes in the twofold family, respectively. 

present work. In particular, the more elongated shape of the mid-edge volume in the 
direction of fivefold axes increases the acceptance domains for small triacontahedra 
( ~ 2 . 7  8, radius instead of 1.8 8, in term of spherical equivalence). 

Finally, alast alternative way of visualizing the 3D structure may be a description in 
terms of atomic planes. Such a description can be obtained rather easily from the 
appropriate physical cut of the 6D periodic structure. The point is exemplified in figure 
14 showing a family of atomic 'planes' perpendicular to a hvofold direction. Two diff erent 
average repetition distances, namely 1.643 and 2.658 8, in a ratio of l/r, and arranged 
into a Fibonnacci sequence, are observed. Their average d-spacing corresponds to one 
ofthestrongest diffractionpeak,i.e. ( N ,  M) = (U), 32). The twofoldplanesarealsothe 
most dense and more distant from each other (as compared with threefold or fivefold 
plane families). They are formed by two different types of layers: (i) dense layers with 
A atoms (originating from both vertex and mid-edge volumes) and Li atoms; (ii) less 
occupied layers with either A or Li atoms alone. Threefold or fivefold planes never 
contain the three types of atoms simultaneously. Such a description is reminiscent of a 
property of the simple ~ D F T  in which planes of atoms and columnar structures have been 
pointed out by Duneau and Katz [U]. Finally, the structure as described in terms of 
atomic plane families allows us to understand the observed morphology of the single 
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(quasi)crystal AICuLi, alongrulesanalogous to those ofclassical crystal growth. Indeed, 
the triacontahedral single grains which have been obtained, have facets perpendicular 
to twofold axes and edges along fivefold axes, the most dense atomic planes and rows. 
Accordingly it may be conjectured that AlSiMn quasicrystals tend to grow into dode- 
cahedralor/and icosidodecahedralgrains because of a different atomic decoration which 
produces highest density in fivefold or threefold atomic planes [1,2]. 

M de Boissieu et a1 

8. Conclusions 

A detailed neutron and x-ray diffraction study of the AlCuLi quasicrystal has been 
completed. The association of contrast variation effects, thanks to both Cu and Li 
isotopic substitutions, and single crystaI investigations allows the best experimental 
determination of partial structure factors, with their amplitudes and phases, The pro- 
cedure for data analysis, though being worked out in 6~ space, is reminiscent of early 
age classical crystallography: Patterson functions are used to suggest a density model 
which is further refined up to convergency with diffraction data. 

The physical 3~ structure has then been generated by a proper cut of the high- 
dimensional description, Atom positions can then be simply listed for further use as such 
or analysed in terms of atomic plane families, statistics of atomic identified clusters, 
~ D P T  (inflated or not). Forcing the structure into the ~ D P T  with 5.05 A edges results in 
unphysical AlCu/Li disorder [31,32], or non-unique decoration of the tiles. Even the 
z’-intlated 3DPT suffer the same drawbacks though to a lesser extent. This may not be 
very surprising and it has been known for several years 1361 that there are structures 
which are neither decorations of 3DPTS nor strict projection from six dimensions which 
are nevertheless icosahedral quasicrystals (random tiling models). 

However, when the latter applies properly, and assuming that the A3,,, volumes of 
the 6D structure can be designed in detail, complete information about atomic positions 
remains contained in this higher space periodic description, within the usual very con- 
densed aspect of the decorated unit cell. Unfortunately, we are still ignoring how to 
project this information (if possible!) into our physical space. In the cut procedure, part 
of the structural information is unavoidably lost and hidden in six dimensions, resulting 
in limitations of size and type of clusters or atomic planes, unsatisfactory 3DPT etc. As 
such, the 3D structure may be very useful anyhow and it permits progress into the 
understanding of quasicrystals. 
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